Reputation: 305
I have a code that I need to parallelize. The code itself works without issues. The code is a method of a python class. For example,
class test:
def __init__(self):
<...>
def method(self):
<...>
which I write like this because the details of the FULL CODE may not relevant and it is very long. At the beginning I tried to parallelize this code (just two instances):
t1=test()
t2=test()
pr1=Process(target=t1.method, args=(,))
pr2=Process(target=t2.method, args=(,))
pr1.start()
pr2.start()
pr1.join()
pr2.join()
But this did not work. Not only it was running much slower than running one instance and then another sequentially, but there was also the problem that the class variables were not modified. The last issue was solved thanks to the kind answer of @MattDMo in this thread, by creating a shared namespace, shared variables and shared lists with:
import multiprocessing as mp
<...>
self.manager=mp.Manager()
self.shared=self.manager.Namespace()
self.I=self.manager.list([0.0,0.0,0.0,0.0,0.0])
self.shared.V=V
But it still runs horribly slow.
At the beginning I thought that because I'm executing the code in a laptop with two cores, the two cores get saturated but the two instances and the computer gets slow because can't perform any other task quickly. So I decided to try the code in a desktop PC with 6 cores (also a linux system). It does not solve the problem. Still the parallelized version is much slower. On the other hand, the CPU's of the desktop computer doesn't get very hot as when I execute C compiled code with multi-threading. Anybody has a clue about what is going on?
The FULL CODE is here, and included below:
from math import exp
from pylab import *
from scipy.stats import norm
from scipy.integrate import ode
from random import gauss,random
from numpy import dot,fft
from time import time
import multiprocessing as mp
from multiprocessing import Pool
from multiprocessing import Process
from multiprocessing import Queue, Pipe
from multiprocessing import Lock, current_process
#Global variables
sec_steps=1000 #resolution (steps per second)
DT=1/float(sec_steps)
stdd=20 #standard deviation for retina random input
stdd2=20 #standard deviation for sigmoid
#FUNCTION TO APPROXIMATE NORMAL CUMULATIVE DISTRIBUTION FUNCTION
def sigmoid(x,mu,sigma):
beta1=-0.0004406
beta2=0.0418198
beta3=0.9
z=(x-mu)/sigma
if z>8:
return 1
elif z<-8:
return 0
else:
return 1/(1+exp(-sqrt(pi)*(beta1*z**5+beta2*z**3+beta3*z)))
#CLASSES
class retina: ##GAUSSIAN WHITE NOISE GENERATOR
def __init__(self,mu,sigma):
self.mu=mu
self.sigma=sigma
def create_pulse(self):
def pulse():
return gauss(self.mu,self.sigma)
#return uniform(-1,1)*sqrt(3.)*self.sigma+self.mu
return pulse
def test_white_noise(self,N): #test frequency spectrum of random number generator for N seconds
noise=[]
pulse=self.create_pulse()
steps=sec_steps*N+1
t=linspace(0,N,steps)
for i in t:
noise.append(pulse())
X=fft(noise)
X=[abs(x)/(steps/2.0) for x in X]
xlim([0,steps/N])
xlabel("freq. (Hz)")
ylabel("Ampl. (V)")
plot((t*steps/N**2)[1:],X[1:],color='black')
#savefig('./wnoise.eps', format='eps', dpi=1000)
show()
return noise
class cleft: #object: parent class for a synaptic cleft
def __init__(self):
self.shared=manager.Namespace()
self.shared.preV=0.0 #pre-synaptic voltage
self.shared.r=0.0 #proportion of channels opened
Tmax=1.0 #mM
mu=-35.0 #mV
sigma=stdd2 #mV
def T(self): #Receives presynaptic Voltage preV, returns concentration of the corresponding neurotransmitter.
return self.Tmax*sigmoid(self.shared.preV,self.mu,self.sigma)
def r_next(self): #Solves kinematic ode -analytical solution- to find r after one time step DT (needs T and alfa and beta parameters)
"""
runs the ode for one unit of time dt, as specified
updates the previous r taken as initial condition
"""
tau=1.0/(self.alfa*self.T()+self.beta)
r_inf=self.alfa*self.T()*tau
self.shared.r=r_inf+(self.shared.r-r_inf)*exp(-DT/tau)
def DI(self,postV): #Receives PSP and computes resulting change in PSC
return self.g*self.shared.r*(postV-self.restV)
class ampa_cleft(cleft): #Child class for ampa synaptic connection
def __init__(self):
self.manager=mp.Manager()
self.shared=self.manager.Namespace()
self.shared.preV=0.0
self.shared.r=0.5 #initial condition for r
self.alfa=2.0
self.beta=0.1
self.restV=0.0
self.g=0.1
class gaba_a_cleft(cleft): #Child class for GABAa synaptic connection
def __init__(self):
self.shared=manager.Namespace()
self.shared.preV=0.0
self.shared.r=0.5
self.alfa=2.0
self.beta=0.08
self.restV=-75.0
self.g=0.2
class gaba_a_cleft_trnTOtrn(cleft): #Child class for GABAa synaptic connection
def __init__(self):
self.manager=mp.Manager()
self.shared=self.manager.Namespace()
self.shared.preV=0.0
self.shared.r=0.5
self.alfa=2.0
self.beta=0.08
self.restV=-75.0
self.g=0.2
class gaba_a_cleft_inTOin(cleft): #Child class for GABAa synaptic connection
def __init__(self):
self.manager=mp.Manager()
self.shared=self.manager.Namespace()
self.shared.preV=0.0
self.shared.r=0.5
self.alfa=2.0
self.beta=0.08
self.restV=-75.0
self.g=0.2
class gaba_a_cleft_trnTOtcr(cleft): #Child class for GABAa synaptic connection
def __init__(self):
self.manager=mp.Manager()
self.shared=self.manager.Namespace()
self.shared.preV=0.0
self.shared.r=0.5
self.alfa=2.0
self.beta=0.08
self.restV=-85.0
self.g=0.1
class gaba_a_cleft_inTOtcr(cleft): #Child class for GABAa synaptic connection
def __init__(self):
self.manager=mp.Manager()
self.shared=self.manager.Namespace()
self.shared.preV=0.0
self.shared.r=0.5
self.alfa=2.0
self.beta=0.08
self.restV=-85.0
self.g=0.1
class gaba_b_cleft(cleft): #Child class for GABAa synaptic connection
def __init__(self):
self.manager=mp.Manager()
self.shared=self.manager.Namespace()
self.shared.preV=0.0
self.shared.r=0.5
self.shared.R=0.5
self.shared.X=0.5
self.alfa_1=0.02
self.alfa_2=0.03
self.beta_1=0.05
self.beta_2=0.01
self.restV=-100.0
self.g=0.06
self.n=4
self.Kd=100 #Dissociation constant
def r_next(self): #Solves kinematic ode SECOND MESSENGER -analytical solution- to find r after one time step DT (needs T and alfa and beta parameters)
"""
runs the ode for one unit of time dt, as specified
updates the previous r taken as initial condition
"""
Q1=self.alfa_1*self.T()
Q2=-Q1-self.beta_1
R0=self.shared.R
X0=self.shared.X
self.shared.R=(Q1*(exp(Q2*DT)-1)+Q2*R0*exp(Q2*DT))/Q2
self.shared.X=(exp(-self.beta_2*DT)*(self.alfa_2*(self.beta_2*(exp(DT*(self.beta_2+Q2))*(Q1+Q2*R0)+Q1*(-exp(self.beta_2*DT))-Q2*R0)-Q1*Q2*(exp(self.beta_2*DT)-1))+self.beta_2*Q2*X0*(self.beta_2+Q2)))/(self.beta_2*Q2*(self.beta_2+Q2))
self.shared.r=self.shared.X**self.n/(self.shared.X**self.n+self.Kd)
#######################################################################################################################################################
class neuronEnsemble:
def __init__(self,V): #Parent class for a Neuron ensemble
self.manager=mp.Manager()
self.shared=self.manager.Namespace()
self.I=self.manager.list([0.0,0.0,0.0,0.0,0.0]) #Variables to store changes in PSC produced by synaptic connection
self.shared.V=V #Actual state of the membrane potential
kappa=1.0 #conductance
def V_next(self): #ode analitycally for a single time step DT
K1=self.C[0]*self.g/self.kappa
K2=(-dot(self.C,self.I)+self.C[0]*self.g*self.restV)/self.kappa
self.shared.V=K2/K1+(self.shared.V-K2/K1)*exp(-K1*DT)
class TCR_neuronEnsemble(neuronEnsemble):
def __init__(self,V):
self.manager=mp.Manager()
self.shared=self.manager.Namespace()
self.I=self.manager.list([0.0,0.0,0.0,0.0,0.0]) #Variables to store changes in PSC produced by synaptic connection
self.shared.V=V #Actual state of the membrane potential
self.g=0.01 #conductance of leak
self.restV=-55.0 #rest of leak
self.C=(1.0,7.1,1.0/2.0*30.9/4.0,1.0/2.0*3.0*30.9/4.0,1.0/2.0*30.9) #Cleak,C2,C3,C4,C7!! #connectivity constants to the ensemble
#First one is Cleak, the others in same order as in diagram
class TRN_neuronEnsemble(neuronEnsemble):
def __init__(self,V):
self.manager=mp.Manager()
self.shared=self.manager.Namespace()
self.I=self.manager.list([0.0,0.0,0.0,0.0,0.0]) #Variables to store changes in PSC produced by synaptic connection
self.shared.V=V #Actual state of the membrane potential
self.g=0.01 #conductance of leak
self.restV=-72.5 #rest of leak
self.C=(1.0,15.0,35.0,0.0,0.0) #Cleak,C5,C8 #connectivity constants to the ensemble
#First one is Cleak, the others in same order as in diagram
class IN_neuronEnsemble(neuronEnsemble): #!!! update all parameters !!!
def __init__(self,V):
self.manager=mp.Manager()
self.shared=self.manager.Namespace()
self.I=self.manager.list([0.0,0.0,0.0,0.0,0.0]) #Variables to store changes in PSC produced by synaptic connection
self.shared.V=V #Actual state of the membrane potential
self.g=0.01 #conductance of leak
self.restV=-70.0 #rest of leak
self.C=(1.0,47.4,23.6,0.0,0.0) #Cleak,C1,C6!! #connectivity constants to the ensemble
#First one is Cleak, the others in same order as in diagram
######################################INSTANCE GROUP#################################################################
class group:
def __init__(self,tcr_V0,trn_V0,in_V0):
#Declarations of instances
####################
#SYNAPTIC CLEFTS
self.cleft_ret_in=ampa_cleft() #cleft between retina and IN ensemble
self.cleft_ret_tcr=ampa_cleft() #cleft between retina and TCR ensemble
self.cleft_in_in=gaba_a_cleft_inTOin() #cleft between IN and IN ensembles
self.cleft_in_tcr=gaba_a_cleft_inTOtcr() #cleft between IN and TCR ensembles
self.cleft_tcr_trn=ampa_cleft() #cleft between TCR and TRN ensembles
self.cleft_trn_trn=gaba_a_cleft_trnTOtrn() #cleft between TRN and TRN ensembles
self.cleft_trn_tcr_a=gaba_a_cleft_trnTOtcr() #cleft between TRN and TCR ensembles GABAa
self.cleft_trn_tcr_b=gaba_b_cleft() #cleft between TRN and TCR ensembles GABAb
#POPULATIONS
self.in_V0=in_V0 #mV i.c excitatory potential
self.IN=IN_neuronEnsemble(self.in_V0) #create instance of IN ensemble
self.tcr_V0=tcr_V0 #mV i.c excitatory potential
self.TCR=TCR_neuronEnsemble(self.tcr_V0) #create instance of TCR ensemble
self.trn_V0=trn_V0 #mV i.c inhibitory potential
self.TRN=TRN_neuronEnsemble(self.trn_V0) #create instance of TCR ensemble
def step(self,p): #makes a step of the circuit for the given instance
#UPDATE TRN
self.cleft_tcr_trn.shared.preV=self.TCR.shared.V #cleft takes presynaptic V
self.cleft_tcr_trn.r_next() #cleft updates r
self.TRN.I[2]=self.cleft_tcr_trn.DI(self.TRN.shared.V) #update PSC TCR--->TRN
self.cleft_trn_trn.shared.preV=self.TRN.shared.V #cleft takes presynaptic V
self.cleft_trn_trn.r_next() #cleft updates r
self.TRN.I[1]=self.cleft_trn_trn.DI(self.TRN.shared.V) #update PSC TRN--->TRN
self.TRN.V_next() #update PSP in TRN
#record retinal pulse ------|> IN AND TCR
self.cleft_ret_in.shared.preV=self.cleft_ret_tcr.shared.preV=p
#UPDATE TCR
self.cleft_ret_tcr.r_next() #cleft updates r
self.TCR.I[1]=self.cleft_ret_tcr.DI(self.TCR.shared.V) #update PSC RET---|> TCR
self.cleft_trn_tcr_b.shared.preV=self.TRN.shared.V #cleft takes presynaptic V
self.cleft_trn_tcr_b.r_next() #cleft updates r
self.TCR.I[2]=self.cleft_trn_tcr_b.DI(self.TCR.shared.V) #update PSC
self.cleft_trn_tcr_a.shared.preV=self.TRN.shared.V #cleft takes presynaptic V
self.cleft_trn_tcr_a.r_next() #cleft updates r
self.TCR.I[3]=self.cleft_trn_tcr_a.DI(self.TCR.shared.V) #cleft updates r
self.cleft_in_tcr.shared.preV=self.IN.shared.V #cleft takes presynaptic V
self.cleft_in_tcr.r_next() #cleft updates r
self.TCR.I[4]=self.cleft_in_tcr.DI(self.TCR.shared.V) #update PSC
self.TCR.V_next()
#UPDATE IN
self.cleft_ret_in.r_next() #cleft updates r
self.IN.I[1]=self.cleft_ret_in.DI(self.IN.shared.V) #update PSC
self.cleft_in_in.shared.preV=self.IN.shared.V #cleft takes presynaptic V
self.cleft_in_in.r_next() #cleft updates r
self.IN.I[2]=self.cleft_in_in.DI(self.IN.shared.V) #update PSC
self.IN.V_next()
#----------------------------------------
def stepN(self, p, N, data_Vtcr, data_Vtrn, data_Vin): #makes N steps, receives a vector of N retinal impulses and output lists
data_Vtcr.append(self.tcr_V0)
data_Vtrn.append(self.trn_V0)
data_Vin.append(self.in_V0)
for i in xrange(N):
self.step(p[i])
data_Vtcr.append(self.TCR.shared.V) #write to output list
data_Vtrn.append(self.TRN.shared.V)
data_Vin.append(self.IN.shared.V)
name=current_process().name
print name+" "+str(i)
######################################################################################################################
############################### CODE THAT RUNS THE SIMULATION OF THE MODEL ###########################################
######################################################################################################################
def run(exec_t):
"""
runs the simulation for t=exec_t seconds
"""
t_0=time()
mu=-45.0 #mV
sigma=stdd #20.0 #mV
ret=retina(mu,sigma) #create instance of white noise generator
#initial conditions
tcr_V0=-61.0 #mV i.c excitatory potential
trn_V0=-84.0 #mV i.c inhibitory potential
in_V0=-70.0 #mV i.c excitatory potential
###########################LISTS FOR STORING DATA POINTS################################
t=linspace(0.0,exec_t,exec_t*sec_steps+1)
# data_Vtcr=[]
# data_Vtcr.append(tcr_V0)
#
# data_Vtrn=[]
# data_Vtrn.append(trn_V0)
#
# data_Vin=[]
# data_Vin.append(in_V0)
# ###NUMBER OF INSTANCES
# N=2
# pulse=ret.create_pulse()
# #CREATE INSTANCES
# groupN=[]
# for i in xrange(N):
# g=group(in_V0,tcr_V0,trn_V0)
# groupN.append(g)
#
# for i in t[1:]:
# p=pulse()
# proc=[]
# for j in xrange(N):
# pr=Process(name="group_"+str(j),target=groupN[j].step, args=(p,))
# pr.start()
# proc.append(pr)
# for j in xrange(N):
# proc[j].join(N)
#
# data_Vtcr.append((groupN[0].TCR.shared.V+groupN[1].TCR.shared.V)*0.5) #write to output list
# data_Vtrn.append((groupN[0].TRN.shared.V+groupN[1].TRN.shared.V)*0.5)
# data_Vin.append((groupN[0].IN.shared.V+groupN[1].IN.shared.V)*0.5)
#############FOR LOOPING INSIDE INSTANCE ---FASTER#############################################
#CREATE p vector of retinal pulses
p=[]
pulse=ret.create_pulse()
for k in xrange(len(t)-1):
p.append(pulse())
#CREATE INSTANCES
N=2
groupN=[]
proc=[]
manager=mp.Manager() #creating a shared namespace
data_Vtcr_0 = manager.list()
data_Vtrn_0 = manager.list()
data_Vin_0 = manager.list()
data_Vtcr_1 = manager.list()
data_Vtrn_1 = manager.list()
data_Vin_1 = manager.list()
data_Vtcr=[data_Vtcr_0, data_Vtcr_1]
data_Vtrn=[data_Vtrn_0, data_Vtrn_1]
data_Vin=[data_Vin_0, data_Vin_1]
for j in xrange(N):
g=group(tcr_V0,trn_V0,in_V0)
groupN.append(g)
for j in xrange(N):
pr=Process(name="group_"+str(j),target=groupN[j].stepN, args=(p, len(t)-1, data_Vtcr[j], data_Vtrn[j], data_Vin[j],))
pr.start()
proc.append(pr)
for j in xrange(N):
proc[j].join()
data_Vtcr_av=[0.5*i for i in map(add, data_Vtcr[0], data_Vtcr[1])]
data_Vtrn_av=[0.5*i for i in map(add, data_Vtrn[0], data_Vtrn[1])]
data_Vin_av =[0.5*i for i in map(add, data_Vin[0], data_Vin[1])]
print len(t), len(data_Vtcr[0]), len(data_Vtcr_av)
##Plotting#####################################
subplot(3,1,1)
xlabel('t')
ylabel('tcr - mV')
plot(t[50*sec_steps:],array(data_Vtcr_av)[50*sec_steps:], color='black')
subplot(3,1,2)
xlabel('t')
ylabel('trn - mV')
plot(t[50*sec_steps:],array(data_Vtrn_av)[50*sec_steps:], color='magenta')
subplot(3,1,3)
xlabel('t')
ylabel('IN - mV')
plot(t[50*sec_steps:],array(data_Vin_av)[50*sec_steps:], color='red')
#savefig('./v_tcr.eps', format='eps', dpi=1000)
###############################################
t_1=time() #measure elapsed time
print "elapsed time: ", t_1-t_0, " seconds."
#save data to file
FILE=open("./output.dat","w")
FILE.write("########################\n")
FILE.write("# t V #\n")
FILE.write("########################\n")
for k in range(len(t)):
FILE.write(str(t[k]).zfill(5)+"\t"*3+repr(data_Vtcr_av[k])+"\n")
FILE.close()
#################
show()
return t,array(data_Vtcr)
######################################################################################################################
######################################################################################################################
if __name__ == "__main__":
run(60) #run simulation for 60 seconds
Upvotes: 3
Views: 4672
Reputation: 94871
Your problem is that you're relying too heavily on multiprocessing.Manager
Proxy
objects to do your mathematical calculations. I tried to warn you about this downside to multiprocessing.Manager
in my answer to your original question, but my wording wasn't strong enough. I said this:
Just keep in mind that a
multiprocessing.Manager
starts a child process to manage all the shared instances you create, and that every time you access one of theProxy
instances, you're actually making an IPC call to theManager
process.
I should have added: "And IPC calls are much more expensive than normal access within the same process" . Your original question didn't really indicate how extensively you were going to be using the Manager
instances, so I didn't think to emphasize it.
Consider this small example that simply reads from one Proxy
variable in a loop:
>>> timeit.timeit("for _ in range(1000): x = v + 2", setup="v = 0", number=1000)
0.040110111236572266
>>> timeit.timeit("for _ in range(1000): x = shared.v + 2",
setup="import multiprocessing ; m = multiprocessing.Manager() ; shared = m.Namespace(); shared.v = 0",
number=1000)
15.048354864120483
It's almost 400x slower when you introduce the shared variable. Now, this example is a little extreme because we're accessing the shared variable in a tight loop, but the point stands; accessing the Proxy
variables is slow. And you're doing that a lot in your program. The extra overhead of accessing the Proxy
is much, much more expensive than what you gain by running two processes simultaneously.
You're going to need to refactor this code significantly to keep usage of Proxy
variables to an absolute minimum. You may find more success replacing most of the usages of multiprocessing.Namespace
with multiprocessing.Value
, which are stored in shared memory, rather than in a separate process. This makes them much faster (though still much slower than regular variables):
>>> timeit.timeit("for _ in range(1000): x = v.value + 2", setup="import multiprocessing ; v = multiprocessing.Value('i', 0)", number=1000)
0.29022717475891113
Things get even faster if you initialize it with lock=False
:
>>> timeit.timeit("for _ in range(1000): x = v.value + 2", setup="import multiprocessing ; v = multiprocessing.Value('i', 0, lock=False)", number=1000)
0.06386399269104004
but then the Value
is no longer automatically process-safe. You'll need to explicitly create and take a multiprocessing.Lock
to synchronize access to the variables if they could potentially get changed in both processes simultaneously.
The only other restriction with multiprocessing.Value
is that you're limited to types supported by ctypes
or the array
module. This actually should mostly be ok for you, since you're primarily using ints and floats. The only pieces that you may need to keep as Proxy
instances are the lists, though you could probably use a multiprocessing.Array
, too.
Upvotes: 9
Reputation: 622
How long is each process running for - how much work are they doing? There is an overhead with starting off a separate process - when you do so a new child process must be created and the environment of the parent process has to be copied over to it. If you are dealing with very short lived jobs then it could well be slower than a single process, single threaded alternative.
If your individual jobs are short try increasing the amount of work they are doing and see if you get an improvement in speed.
Upvotes: 1
Reputation: 2479
Some numeric python modules, like numpy, can change the cpu affinity of the python interpreter (how many cores the interpreter can use at once). This often occur when the python module is linked against certain multithreaded BLAS libraries. The issue can cause multiple python processes to run on only one core, making it slower than the single threaded version, especially when dealing with shared state.
Check if your program is not using all your cores. If it is not using all of them, you can change the cpu affinity back by executing a system call (using os.system
) to the taskset
command, with the proper arguments.
Upvotes: 1