Reputation: 344
I have two matrices
Mdates<-c("8Q1","8Q2","8Q3","8Q4","9Q1","9Q2","9Q3","9Q4","10Q1","10Q2","10Q3","10Q4","11Q1","11Q2","11Q3","11Q4","12Q1","12Q2","12Q3","12Q4","13Q1","13Q2","13Q3","14Q1","14Q2")
Cr<-matrix(c("14Q2","13Q2","14Q2","14Q1","13Q4","13Q4","12Q4","13Q3","13Q4","12Q3","14Q2",12867.8,12710.7,10746.9,9634.4,8238.5,7835.2,7315.6,7263.1,7002.7,6104.8,5759.3),ncol=2,byrow=FALSE)
I add all the things with the same name in Cr and put it under the same column name in Mdates, so idealy it would look like this:
8Q1 8Q2 8Q3 8Q4 9Q1 9Q2 9Q3 9Q4 10Q1 10Q2 10Q3 10Q4 11Q1 11Q2 11Q3 11Q4 12Q1 12Q2 12Q3 12Q4 13Q1 13Q2 13Q3 13Q4 14Q1 14Q2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6104.8 7315.6 0 12710.7 7263.1 15241.3 9634.4 29373.9
Upvotes: 1
Views: 48
Reputation: 4921
I think the following does it. First it selects the elements in Cr that are found in Mdates:
A<-Cr[ ,1]
B<-which(A %in% Mdates)
Crnew<-Cr[B, ]
The following step provides the summed values for each category:
fac <- as.factor(Crnew[ ,1])
num <- as.numeric(Crnew[ ,2])
x <-data.frame(fac, num)
tapply(x$num, x$fac, FUN=sum)
Upvotes: 2
Reputation: 887501
You could try:
res <- tapply(as.numeric(Cr[,2]), factor(Cr[,1], levels=unique(Mdates)), FUN=sum)
res[is.na(res)] <- 0
res
# 8Q1 8Q2 8Q3 8Q4 9Q1 9Q2 9Q3 9Q4 10Q1 10Q2 10Q3 10Q4 11Q1
# 0 0 0 0 0 0 0 0 0 0 0 0 0
#11Q2 11Q3 11Q4 12Q1 12Q2 12Q3 12Q4 13Q1 13Q2 13Q3 14Q1 14Q2
# 0 0 0 0 0 6105 7316 0 12711 7263 9634 29374
Upvotes: 2