Spider
Spider

Reputation: 1007

Minimize objective function using limfit.minimize in Python

I am having a problem with package lmfit.minimize minimization procedure. Actually, I could not create a correct objective function for my problem.

Problem definition

I need to find the optimum: x1, x2,...,x5 so that it can satisfy the y

My question:

My code:

import numpy as np
from lmfit import Parameters, minimize

def func(x,a):
    return np.dot(a, x**2)

def residual(pars, a, y):
    vals = pars.valuesdict()
    x = vals['x']
    model = func(x,a)
    return y - model

def main():
    # simple one: a(M,N) = a(3,5)
    a = np.array([ [ 0, 0, 1, 1, 1 ],
                   [ 1, 0, 1, 0, 1 ],
                   [ 0, 1, 0, 1, 0 ] ])
    # true values of x
    x_true = np.array([10, 13, 5, 8, 40])
    # data without noise
    y = func(x_true,a)

    #************************************
    # Apriori x0
    x0 = np.array([2, 3, 1, 4, 20])
    fit_params = Parameters()
    fit_params.add('x', value=x0)

    out = minimize(residual, fit_params, args=(a, y))
    print out
if __name__ == '__main__':
    main()

Upvotes: 3

Views: 1476

Answers (1)

Saullo G. P. Castro
Saullo G. P. Castro

Reputation: 58915

Directly using scipy.optimize.minimize() the code below solves this problem. Note that with more points yn you will tend to get the same result as x_true, otherwise more than one solution exists. You can minimize the effect of the ill-constrained optimization by adding boundaries (see the bounds parameter used below).

import numpy as np
from scipy.optimize import minimize

def residual(x, a, y):
    s = ((y - a.dot(x**2))**2).sum()
    return s

def main():
    M = 3
    N = 5
    a = np.random.random((M, N))
    x_true = np.array([10, 13, 5, 8, 40])
    y = a.dot(x_true**2)

    x0 = np.array([2, 3, 1, 4, 20])
    bounds = [[0, None] for x in x0]
    out = minimize(residual, x0=x0, args=(a, y), method='L-BFGS-B', bounds=bounds)
    print(out.x)

If M>=N you could also use scipy.optimize.leastsq for this task:

import numpy as np
from scipy.optimize import leastsq

def residual(x, a, y):
    return y - a.dot(x**2)

def main():
    M = 5
    N = 5
    a = np.random.random((M, N))
    x_true = np.array([10, 13, 5, 8, 40])
    y = a.dot(x_true**2)

    x0 = np.array([2, 3, 1, 4, 20])
    out = leastsq(residual, x0=x0, args=(a, y))
    print(out[0])

Upvotes: 3

Related Questions