tdiddy
tdiddy

Reputation: 133

Pandas read csv dateint columns to datetime

I'm new to both StackOverflow and pandas. I am trying to read in a large CSV file with stock market bin data in the following format:

date,time,open,high,low,close,volume,splits,earnings,dividends,sym
20130625,715,49.2634,49.2634,49.2634,49.2634,156.293,1,0,0,JPM
20130625,730,49.273,49.273,49.273,49.273,208.39,1,0,0,JPM
20130625,740,49.1866,49.1866,49.1866,49.1866,224.019,1,0,0,JPM
20130625,745,49.321,49.321,49.321,49.321,208.39,1,0,0,JPM
20130625,750,49.3306,49.369,49.3306,49.369,4583.54,1,0,0,JPM
20130625,755,49.369,49.369,49.369,49.369,416.78,1,0,0,JPM
20130625,800,49.369,49.369,49.3594,49.3594,1715.05,1,0,0,JPM
20130625,805,49.369,49.369,49.3306,49.3306,1333.7,1,0,0,JPM
20130625,810,49.3306,49.3786,49.3306,49.3786,1567.09,1,0,0,JPM

I have the following code to read it into a DataFrame in Pandas

import numpy as np
import scipy as sp
import pandas as pd
import datetime as dt
fname  = 'bindat.csv'
df     = pd.read_csv(fname, header=0, sep=',')

The problem is that the date and time columns are read in as int64. I would like to merge these two to a single timestamp such as: 2013-06-25 07:15:00.

I am struggling to even get the time read in properly using:

df['date'] = pd.to_datetime(df['date'].astype(str))
df['time'] = pd.to_datetime(df['time'].astype(str))

The first command works to convert, but the time seems weird.

df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 9999 entries, 0 to 9998
Data columns (total 11 columns):
date         9999 non-null datetime64[ns]
time         9999 non-null object
open         9999 non-null float64
high         9999 non-null float64
low          9999 non-null float64
close        9999 non-null float64
volume       9999 non-null float64
splits       9999 non-null float64
earnings     9999 non-null int64
dividends    9999 non-null float64
sym          9999 non-null object
dtypes: datetime64[ns](1), float64(7), int64(1), object(2)None

And then I'll want to merge into a single DatetimeIndex.

Any suggestions are greatly appreciated.

Cheers!

Upvotes: 6

Views: 15456

Answers (1)

DSM
DSM

Reputation: 353099

There are quite a few ways to do this. One way to do it during read_csv would be to use the parse_dates and date_parser arguments, telling parse_dates to combine the date and time columns and defining an inline function to parse the dates:

>>> df = pd.read_csv("bindat.csv", parse_dates=[["date", "time"]],
date_parser=lambda x: pd.to_datetime(x, format="%Y%m%d %H%M"), 
index_col="date_time")
>>> df
                        open     high      low    close    volume  splits  earnings  dividends  sym
date_time                                                                                          
2013-06-25 07:15:00  49.2634  49.2634  49.2634  49.2634   156.293       1         0          0  JPM
2013-06-25 07:30:00  49.2730  49.2730  49.2730  49.2730   208.390       1         0          0  JPM
2013-06-25 07:40:00  49.1866  49.1866  49.1866  49.1866   224.019       1         0          0  JPM
2013-06-25 07:45:00  49.3210  49.3210  49.3210  49.3210   208.390       1         0          0  JPM
2013-06-25 07:50:00  49.3306  49.3690  49.3306  49.3690  4583.540       1         0          0  JPM
2013-06-25 07:55:00  49.3690  49.3690  49.3690  49.3690   416.780       1         0          0  JPM
2013-06-25 08:00:00  49.3690  49.3690  49.3594  49.3594  1715.050       1         0          0  JPM
2013-06-25 08:05:00  49.3690  49.3690  49.3306  49.3306  1333.700       1         0          0  JPM
2013-06-25 08:10:00  49.3306  49.3786  49.3306  49.3786  1567.090       1         0          0  JPM
2013-06-25 16:10:00  49.3306  49.3786  49.3306  49.3786  1567.090       1         0          0  JPM

where I added an extra row at the end to make sure that hours were behaving.

Upvotes: 19

Related Questions