Reputation: 13510
I have a dataframe in pandas where each column has different value range. For example:
df:
A B C
1000 10 0.5
765 5 0.35
800 7 0.09
Any idea how I can normalize the columns of this dataframe where each value is between 0 and 1?
My desired output is:
A B C
1 1 1
0.765 0.5 0.7
0.8 0.7 0.18(which is 0.09/0.5)
Upvotes: 487
Views: 1102424
Reputation: 333
df.normalize()
this thread has been over 9 years old by now.
I am not sure when pandas added this func().
It seems work like a charm for me to do quantitative analysis.
Upvotes: -1
Reputation: 1448
In the new version of scikit-learn, it is now actually possible to keep the pandas column names intact even after the transform, below is an example:
>>> import pandas as pd
>>> from sklearn.preprocessing import MinMaxScaler, MaxAbsScaler
>>> df = pd.DataFrame({'col1':[1000, 765, 800], 'col2':[10, 5, 7], 'col3':[0.5, 0.35, 0.09]}, )
>>> df.head(3)
col1 col2 col3
0 1000 10 0.50
1 765 5 0.35
2 800 7 0.09
>>> scaler = MaxAbsScaler().set_output(transform="pandas") #change here
>>> scaler.fit(df)
>>> df_scaled = scaler.transform(df)
>>> df_scaled.head(3)
col1 col2 col3
0 1.000 1.0 1.00
1 0.765 0.5 0.70
2 0.800 0.7 0.18
I wrote a summary of the new updates here and you can also check the scikit-learn release highlights page.
Also, personally have never been a big fan of MaxAbsScaler, but I went with this one to answer op's question.
Hope this helps, cheers!!
Upvotes: 3
Reputation: 1937
To normalise a DataFrame column, using only native Python.
Different values influence processes, e.g. plot colours.
Between 0
and 1
:
min_val = min(list(df['col']))
max_val = max(list(df['col']))
df['col'] = [(x - min_val) / max_val for x in df['col']]
Between -1
to 1
:
df['col'] = [float(i)/sum(df['col']) for i in df['col']]
OR
df['col'] = [float(tp) / max(abs(df['col'])) for tp in df['col']]
Upvotes: -1
Reputation: 1754
Normalize
You can use minmax_scale
to transform each column to a scale from 0-1.
from sklearn.preprocessing import minmax_scale
df[:] = minmax_scale(df)
Standardize
You can use scale
to center each column to the mean and scale to unit variance.
from sklearn.preprocessing import scale
df[:] = scale(df)
Column Subsets
Normalize single column
from sklearn.preprocessing import minmax_scale
df['a'] = minmax_scale(df['a'])
Normalize only numerical columns
import numpy as np
from sklearn.preprocessing import minmax_scale
cols = df.select_dtypes(np.number).columns
df[cols] = minmax_scale(df[cols])
Full Example
# Prep
import pandas as pd
import numpy as np
from sklearn.preprocessing import minmax_scale
# Sample data
df = pd.DataFrame({'a':[0,1,2], 'b':[-10,-30,-50], 'c':['x', 'y', 'z']})
# MinMax normalize all numeric columns
cols = df.select_dtypes(np.number).columns
df[cols] = minmax_scale(df[cols])
# Result
print(df)
# a b c
# 0 0.0 1.0 x
# 2 0.5 0.5 y
# 3 1.0 0.0 z
Notes:
In all examples scale
can be used instead of minmax_scale
. Keeps index, column names or non-numerical variables unchanged. Function is applied for each column.
Caution:
For machine learning, use minmax_scale
or scale
after train_test_split
to avoid data leakage.
Info
More info on standardization and normalization:
Upvotes: 18
Reputation: 121
Hey use the apply function with lambda which speeds up the process:
def normalize(df_col):
# Condition to exclude 'ID' and 'Class' feature
if (str(df_col.name) != str('ID') and str(df_col.name)!=str('Class')):
max_value = df_col.max()
min_value = df_col.min()
#It avoids NaN and return 0 instead
if max_value == min_value:
return 0
sub_value = max_value - min_value
return np.divide(np.subtract(df_col,min_value),sub_value)
else:
return df_col
df_normalize = df.apply(lambda x :normalize(x))
Upvotes: 0
Reputation: 8718
Take care with this answer, as it ONLY works for data that ranges [0, n]. This does not work for any range of data.
Simple is Beautiful:
df["A"] = df["A"] / df["A"].max()
df["B"] = df["B"] / df["B"].max()
df["C"] = df["C"] / df["C"].max()
Upvotes: 38
Reputation: 17154
References: Wikipedia: Unbiased Estimation of Standard Deviation
import pandas as pd
df = pd.DataFrame({
'A':[1,2,3],
'B':[100,300,500],
'C':list('abc')
})
print(df)
A B C
0 1 100 a
1 2 300 b
2 3 500 c
When normalizing we simply subtract the mean and divide by standard deviation.
df.iloc[:,0:-1] = df.iloc[:,0:-1].apply(lambda x: (x-x.mean())/ x.std(), axis=0)
print(df)
A B C
0 -1.0 -1.0 a
1 0.0 0.0 b
2 1.0 1.0 c
If you do the same thing with sklearn
you will get DIFFERENT output!
import pandas as pd
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
df = pd.DataFrame({
'A':[1,2,3],
'B':[100,300,500],
'C':list('abc')
})
df.iloc[:,0:-1] = scaler.fit_transform(df.iloc[:,0:-1].to_numpy())
print(df)
A B C
0 -1.224745 -1.224745 a
1 0.000000 0.000000 b
2 1.224745 1.224745 c
NO.
The official documentation of sklearn.preprocessing.scale states that using biased estimator is UNLIKELY to affect the performance of machine learning algorithms and we can safely use them.
From official documentation:
We use a biased estimator for the standard deviation, equivalent to
numpy.std(x, ddof=0)
. Note that the choice ofddof
is unlikely to affect model performance.
There is no Standard Deviation calculation in MinMax scaling. So the result is same in both pandas and scikit-learn.
import pandas as pd
df = pd.DataFrame({
'A':[1,2,3],
'B':[100,300,500],
})
(df - df.min()) / (df.max() - df.min())
A B
0 0.0 0.0
1 0.5 0.5
2 1.0 1.0
# Using sklearn
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
arr_scaled = scaler.fit_transform(df)
print(arr_scaled)
[[0. 0. ]
[0.5 0.5]
[1. 1. ]]
df_scaled = pd.DataFrame(arr_scaled, columns=df.columns,index=df.index)
print(df_scaled)
A B
0 0.0 0.0
1 0.5 0.5
2 1.0 1.0
Upvotes: 92
Reputation: 129
If your data is positively skewed, the best way to normalize is to use the log transformation:
df = np.log10(df)
Upvotes: -6
Reputation: 10199
one easy way by using Pandas: (here I want to use mean normalization)
normalized_df=(df-df.mean())/df.std()
to use min-max normalization:
normalized_df=(df-df.min())/(df.max()-df.min())
Edit: To address some concerns, need to say that Pandas automatically applies colomn-wise function in the code above.
Upvotes: 828
Reputation: 123
Pandas does column wise normalization by default. Try the code below.
X= pd.read_csv('.\\data.csv')
X = (X-X.min())/(X.max()-X.min())
The output values will be in range of 0 and 1.
Upvotes: 0
Reputation: 14318
You can simply use the pandas.DataFrame.transform1 function in this way:
df.transform(lambda x: x/x.max())
Upvotes: 5
Reputation: 5580
You can use the package sklearn and its associated preprocessing utilities to normalize the data.
import pandas as pd
from sklearn import preprocessing
x = df.values #returns a numpy array
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
df = pd.DataFrame(x_scaled)
For more information look at the scikit-learn documentation on preprocessing data: scaling features to a range.
Upvotes: 425
Reputation: 472
It is only simple mathematics. The answer should as simple as below.
normed_df = (df - df.min()) / (df.max() - df.min())
Upvotes: 11
Reputation: 1530
This is how you do it column-wise using list comprehension:
[df[col].update((df[col] - df[col].min()) / (df[col].max() - df[col].min())) for col in df.columns]
Upvotes: 4
Reputation: 1122
You might want to have some of columns being normalized and the others be unchanged like some of regression tasks which data labels or categorical columns are unchanged So I suggest you this pythonic way (It's a combination of @shg and @Cina answers ):
features_to_normalize = ['A', 'B', 'C']
# could be ['A','B']
df[features_to_normalize] = df[features_to_normalize].apply(lambda x:(x-x.min()) / (x.max()-x.min()))
Upvotes: 12
Reputation: 4496
You can do this in one line
DF_test = DF_test.sub(DF_test.mean(axis=0), axis=1)/DF_test.mean(axis=0)
it takes mean for each of the column and then subtracts it(mean) from every row(mean of particular column subtracts from its row only) and divide by mean only. Finally, we what we get is the normalized data set.
Upvotes: 0
Reputation: 10058
The following function calculates the Z score:
def standardization(dataset):
""" Standardization of numeric fields, where all values will have mean of zero
and standard deviation of one. (z-score)
Args:
dataset: A `Pandas.Dataframe`
"""
dtypes = list(zip(dataset.dtypes.index, map(str, dataset.dtypes)))
# Normalize numeric columns.
for column, dtype in dtypes:
if dtype == 'float32':
dataset[column] -= dataset[column].mean()
dataset[column] /= dataset[column].std()
return dataset
Upvotes: 3
Reputation: 856
You can create a list of columns that you want to normalize
column_names_to_normalize = ['A', 'E', 'G', 'sadasdsd', 'lol']
x = df[column_names_to_normalize].values
x_scaled = min_max_scaler.fit_transform(x)
df_temp = pd.DataFrame(x_scaled, columns=column_names_to_normalize, index = df.index)
df[column_names_to_normalize] = df_temp
Your Pandas Dataframe is now normalized only at the columns you want
However, if you want the opposite, select a list of columns that you DON'T want to normalize, you can simply create a list of all columns and remove that non desired ones
column_names_to_not_normalize = ['B', 'J', 'K']
column_names_to_normalize = [x for x in list(df) if x not in column_names_to_not_normalize ]
Upvotes: 35
Reputation: 51
def normalize(x):
try:
x = x/np.linalg.norm(x,ord=1)
return x
except :
raise
data = pd.DataFrame.apply(data,normalize)
From the document of pandas,DataFrame structure can apply an operation (function) to itself .
DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds)
Applies function along input axis of DataFrame. Objects passed to functions are Series objects having index either the DataFrame’s index (axis=0) or the columns (axis=1). Return type depends on whether passed function aggregates, or the reduce argument if the DataFrame is empty.
You can apply a custom function to operate the DataFrame .
Upvotes: 3
Reputation: 1007
The solution given by Sandman and Praveen is very well. The only problem with that if you have categorical variables in other columns of your data frame this method will need some adjustments.
My solution to this type of issue is following:
from sklearn import preprocesing
x = pd.concat([df.Numerical1, df.Numerical2,df.Numerical3])
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
x_new = pd.DataFrame(x_scaled)
df = pd.concat([df.Categoricals,x_new])
Upvotes: 14
Reputation: 1095
If you like using the sklearn package, you can keep the column and index names by using pandas loc
like so:
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaled_values = scaler.fit_transform(df)
df.loc[:,:] = scaled_values
Upvotes: 43
Reputation: 2955
Your problem is actually a simple transform acting on the columns:
def f(s):
return s/s.max()
frame.apply(f, axis=0)
Or even more terse:
frame.apply(lambda x: x/x.max(), axis=0)
Upvotes: 66
Reputation: 5520
Based on this post: https://stats.stackexchange.com/questions/70801/how-to-normalize-data-to-0-1-range
You can do the following:
def normalize(df):
result = df.copy()
for feature_name in df.columns:
max_value = df[feature_name].max()
min_value = df[feature_name].min()
result[feature_name] = (df[feature_name] - min_value) / (max_value - min_value)
return result
You don't need to stay worrying about whether your values are negative or positive. And the values should be nicely spread out between 0 and 1.
Upvotes: 80
Reputation: 601
I think that a better way to do that in pandas is just
df = df/df.max().astype(np.float64)
Edit If in your data frame negative numbers are present you should use instead
df = df/df.loc[df.abs().idxmax()].astype(np.float64)
Upvotes: 15