user2485710
user2485710

Reputation: 9811

About optimized math functions, ranges and intervals

I'm trying to wrap my head around how people that code math functions for games and rendering engines can use an optimized math function in an efficient way; let me explain that further.

There is an high need for fast trigonometric functions in those fields, at times you can optimize a sin, a cos or other functions by rewriting them in a different form that is valid only for a given interval, often times this means that your approximation of f(x) is just for the first quadrant, meaning 0 <= x <= pi/2 .

Now the input for your f(x) is still about all 4 quadrants, but the real formula only covers 1/4 of that interval, the straightforward solution is to detect the quadrant by analyzing the input and see in which range it belongs to, then you adjust the result of the formula accordingly if the input comes from a quadrant that is not the first quadrant .

This is good in theory but this also presents a couple of really bad problems, especially considering the fact that you are doing all this to steal a couple of cycles from your CPU ( you also get a consistent implementation, that is not platform dependent like an hardcoded fsin in Intel x86 asm that only works on x86 and has a certain error range, all of this may differ on other platforms with other asm instructions ), so you should keep things working at a concurrent and high performance level .

The reason I can't wrap my head around the "switch case" with quadrants solution is:

Assuming that I can implement my cross-platform f(x) in C or C++, how the programmers in this field usually address the problem of translating and mapping the inputs, the quadrants to the result via the actual implementation ?

Upvotes: 1

Views: 534

Answers (1)

uesp
uesp

Reputation: 6204

Note: In the below answer I am speaking very generally about code.

Assuming that I can implement my cross-platform f(x) in C or C++, how the programmers in this field usually address the problem of translating and mapping the inputs, the quadrants to the result via the actual implementation ?

The general answer to this is: In the most obvious and simplest way possible that achieves your purpose.

I'm not entirely sure I follow most of your arguments/questions but I have a feeling you are looking for problems where really none exist. Do you truly have the need to re-implement the trigonometric functions? Don't fall into the trap of NIH (Not Invented Here).

the straightforward solution is to detect the quadrant

Yes! I love straightforward code. Code that is perfectly obvious at a glance what it does. Now, sometimes, just sometimes, you have to do some crazy things to get it to do what you want: for performance, or avoiding bugs out of your control. But the first version should be most obvious and simple code that solves your problem. From there you do testing, profiling, and benchmarking and if (only if) you find performance or other issues, then you go into the crazy stuff.

This is good in theory but this also presents a couple of really bad problems,

I would say that this is good in theory and in practice for most cases and I definitely don't see any "bad" problems. Minor issues in specific corner cases or design requirements at most.

A few things on a few of your specific comments:

  • approximation of f(x) is just for the first quadrant: Yes, and there are multiple reasons for this. One simply is that most trigonometric functions have identities so you can easily use these to reduce range of input parameters. This is important as many numerical techniques only work over a specific range of inputs, or are more accurate/performant for small inputs. Next, for very large inputs you'll have to trim the range anyways for most numerical techniques to work or at least work in a decent amount of time and have sufficient accuracy. For example, look at the Taylor expansion for cos() and see how long it takes to converge sufficiently for large vs small inputs.
  • it just prevents possible optimizations: Chances are your c++ compiler these days is way better at optimizations than you are. Sometimes it isn't but the general procedure is to let the compiler do its optimization and only do manual optimizations where you have measured and proven that you need it. Theses days it is very non-intuitive to tell what code is faster by just looking at it (you can read all the questions on SO about performance issues and how crazy some of the root causes are).
  • namely memoization: I've never seen memoization in place for a double function. Just think how many doubles are there between 0 and 1. Now in reduced accuracy situations you can take advantage of it but this is easily implemented as a custom function tailored for that exact situation. Thinking about it, I'm not exactly sure how to implement memoization for a double function that actually means anything and doesn't loose accuracy or performance in the process.
  • increase probability of more branching with a concurrent execution: I'm not sure I'd implement trigonometric functions in a concurrent manner but I suppose its entirely possible to get some performance benefits. But again, the compiler is generally better at optimizations than you so let it do its jobs and then benchmark/profile to see if you really need to do better.
  • doesn't lead to better, clean, dry code: I'm not sure what exactly you mean here, or what "dry code" is for that matter. Yes, sometimes you can get into trouble by too many or too complex if/switch blocks but I can't see a simple check for 4 quadrants apply here...it's a pretty basic and simple case.
  • So for any platform I get the same y for the same values of x: My guess is that getting "exact" values for all 53 bits of double across multiple platforms and systems is not going to be possible. What is the result if you only have 52 bits correct? This would be a great area to do some tests in and see what you get.

I've used trigonometric functions in C for over 20 years and 99% of the time I just use whatever built-in function is supplied. In the rare case I need more performance (or accuracy) as proven by testing or benchmarking, only then do I actually roll my own custom implementation for that specific case. I don't rewrite the entire gamut of <math.h> functions in the hope that one day I might need them.

I would suggest try coding a few of these functions in as many ways as you can find and do some accuracy and benchmark tests. This will give you some practical knowledge and give you some hard data on whether you actually need to reimplement these functions or not. At the very least this should give you some practical experience with implementing these types of functions and chances are answer a lot of your questions in the process.

Upvotes: 2

Related Questions