Fred S
Fred S

Reputation: 1511

Time-series boxplot in pandas

How can I create a boxplot for a pandas time-series where I have a box for each day?

Sample dataset of hourly data where one box should consist of 24 values:

import pandas as pd
n = 480
ts = pd.Series(randn(n),
               index=pd.date_range(start="2014-02-01",
                                   periods=n,
                                   freq="H"))
ts.plot()

I am aware that I could make an extra column for the day, but I would like to have proper x-axis labeling and x-limit functionality (like in ts.plot()), so being able to work with the datetime index would be great.

There is a similar question for R/ggplot2 here, if it helps to clarify what I want.

Upvotes: 13

Views: 32688

Answers (3)

Jonathan
Jonathan

Reputation: 856

It only uses native pandas and allows for hierarchical date-time grouping (i.e spanning years). The key is that if you pass a function to groupby(), it will be called on each element of the dataframe's index. If your index is a DatetimeIndex (or similar), you can access all of the dt's convenience functions for resampling!

n = 480
ts = pd.DataFrame(np.random.randn(n), index=pd.date_range(start="2014-02-01", periods=n, freq="H"))
ts.groupby(lambda x: x.strftime("%Y-%m-%d")).boxplot(subplots=False, figsize=(12,9), rot=90)

enter image description here

Upvotes: 2

Rutger Kassies
Rutger Kassies

Reputation: 64513

If its an option for you, i would recommend using Seaborn, which is a wrapper for Matplotlib. You could do it yourself by looping over the groups from your timeseries, but that's much more work.

import pandas as pd
import numpy as np
import seaborn
import matplotlib.pyplot as plt

n = 480
ts = pd.Series(np.random.randn(n), index=pd.date_range(start="2014-02-01", periods=n, freq="H"))


fig, ax = plt.subplots(figsize=(12,5))
seaborn.boxplot(ts.index.dayofyear, ts, ax=ax)

Which gives: enter image description here

Note that i'm passing the day of year as the grouper to seaborn, if your data spans multiple years this wouldn't work. You could then consider something like:

ts.index.to_series().apply(lambda x: x.strftime('%Y%m%d'))

Edit, for 3-hourly you could use this as a grouper, but it only works if there are no minutes or lower defined. :

[(dt - datetime.timedelta(hours=int(dt.hour % 3))).strftime('%Y%m%d%H') for dt in ts.index]

Upvotes: 17

dulrich
dulrich

Reputation: 135

(Not enough rep to comment on accepted solution, so adding an answer instead.)

The accepted code has two small errors: (1) need to add numpy import and (2) nned to swap the x and y parameters in the boxplot statement. The following produces the plot shown.

import numpy as np
import pandas as pd
import seaborn
import matplotlib.pyplot as plt

n = 480
ts = pd.Series(np.random.randn(n), index=pd.date_range(start="2014-02-01", periods=n, freq="H"))

fig, ax = plt.subplots(figsize=(12,5))
seaborn.boxplot(ts.index.dayofyear, ts, ax=ax)

Upvotes: 11

Related Questions