Reputation: 9734
Is it possible in Spark to implement '.combinations' function from scala collections?
/** Iterates over combinations.
*
* @return An Iterator which traverses the possible n-element combinations of this $coll.
* @example `"abbbc".combinations(2) = Iterator(ab, ac, bb, bc)`
*/
For example how can I get from RDD[X] to RDD[List[X]] or RDD[(X,X)] for combinations of size = 2. And lets assume that all values in RDD are unique.
Upvotes: 26
Views: 29633
Reputation: 21
This creates all combinations (n, 2) and works for any RDD without requiring any ordering on the elements of RDD.
val rddWithIndex = rdd.zipWithIndex
rddWithIndex.cartesian(rddWithIndex).filter{case(a, b) => a._2 < b._2}.map{case(a, b) => (a._1, b._1)}
a._2 and b._2 are the indices, while a._1 and b._1 are the elements of the original RDD.
Example:
Note that, no ordering is defined on the maps here.
val m1 = Map('a' -> 1, 'b' -> 2)
val m2 = Map('c' -> 3, 'a' -> 4)
val m3 = Map('e' -> 5, 'c' -> 6, 'b' -> 7)
val rdd = sc.makeRDD(Array(m1, m2, m3))
val rddWithIndex = rdd.zipWithIndex
rddWithIndex.cartesian(rddWithIndex).filter{case(a, b) => a._2 < b._2}.map{case(a, b) => (a._1, b._1)}.collect
Output:
Array((Map(a -> 1, b -> 2),Map(c -> 3, a -> 4)), (Map(a -> 1, b -> 2),Map(e -> 5, c -> 6, b -> 7)), (Map(c -> 3, a -> 4),Map(e -> 5, c -> 6, b -> 7)))
Upvotes: 2
Reputation: 37435
As discussed, cartesian
will give you n^2 elements of the cartesian product of the RDD with itself.
This algorithm computes the combinations (n,2) of an RDD without having to compute the n^2 elements first: (used String as type, generalizing to a type T takes some plumbing with classtags that would obscure the purpose here)
This is probably less time efficient that cartesian + filtering due to the iterative count
and take
actions that forces the computation of the RDD, but more space efficient as it calculates only the C(n,2) = n!/(2*(n-2))! = (n*(n-1)/2)
elements instead of the n^2
of the cartesian product.
import org.apache.spark.rdd._
def combs(rdd:RDD[String]):RDD[(String,String)] = {
val count = rdd.count
if (rdd.count < 2) {
sc.makeRDD[(String,String)](Seq.empty)
} else if (rdd.count == 2) {
val values = rdd.collect
sc.makeRDD[(String,String)](Seq((values(0), values(1))))
} else {
val elem = rdd.take(1)
val elemRdd = sc.makeRDD(elem)
val subtracted = rdd.subtract(elemRdd)
val comb = subtracted.map(e => (elem(0),e))
comb.union(combs(subtracted))
}
}
Upvotes: 3
Reputation: 18750
Cartesian product and combinations are two different things, the cartesian product will create an RDD of size rdd.size() ^ 2
and combinations will create an RDD of size rdd.size() choose 2
val rdd = sc.parallelize(1 to 5)
val combinations = rdd.cartesian(rdd).filter{ case (a,b) => a < b }`.
combinations.collect()
Note this will only work if an ordering is defined on the elements of the list, since we use <
. This one only works for choosing two but can easily be extended by making sure the relationship a < b
for all a and b in the sequence
Upvotes: 32
Reputation: 37435
This is supported natively by a Spark RDD with the cartesian
transformation.
e.g.:
val rdd = sc.parallelize(1 to 5)
val cartesian = rdd.cartesian(rdd)
cartesian.collect
Array[(Int, Int)] = Array((1,1), (1,2), (1,3), (1,4), (1,5),
(2,1), (2,2), (2,3), (2,4), (2,5),
(3,1), (3,2), (3,3), (3,4), (3,5),
(4,1), (4,2), (4,3), (4,4), (4,5),
(5,1), (5,2), (5,3), (5,4), (5,5))
Upvotes: 3