Reputation: 2735
I have a numpy array like this:
>>> I
array([[ 1., 0., 2., 1., 0.],
[ 0., 2., 1., 0., 2.]])
And an array A like this:
>>> A = np.ones((2,5,3))
I'd like to obtain the following matrix:
>>> result
array([[[ False, False, True],
[ False, True, True],
[ False, False, False],
[ False, False, True],
[ False, True, True]],
[[ False, True, True],
[ False, False, False],
[ False, False, True],
[ False, True, True],
[ False, False, False]]], dtype=bool)
It is better to explain with an example:
I[0,0] = 1 -> result[0,0,:2] = False
and result[1,1,2:] = True
I[1,0] = 0 -> result[1,1,0] = False
and result[1,1,1:] = True
Here is my current implementation (correct):
result = np.empty((A.shape[0], A.shape[1], A.shape[2]))
r = np.arange(A.shape[2])
for i in xrange(A.shape[0]):
result[i] = r > np.vstack(I[i])
print result.astype(np.bool)
Is there a way to implement in a faster way (avoiding the for loop)?
Thanks!
Upvotes: 2
Views: 109
Reputation: 7842
You just need to add another dimension on to I
, such that you can broadcast r
properly:
result = r > I.reshape(I.shape[0],I.shape[1],1)
e.g.
In [41]: r>I.reshape(2,5,1)
Out[41]:
array([[[False, False, True],
[False, True, True],
[False, False, False],
[False, False, True],
[False, True, True]],
[[False, True, True],
[False, False, False],
[False, False, True],
[False, True, True],
[False, False, False]]], dtype=bool)
Upvotes: 1