jO.
jO.

Reputation: 3512

match two data.frames based on multiple columns

My head stands still at the moment. I would like to match/extract data from a larger data.frame (df) based on the columns in a smaller data.frame (mdf). What I'm getting stuck on is the fact that I want to match multiple columns (two in this case). I have tried different approaches using e.g. merge, which, match %in% but non have succeeded.

# Dummy example

# Large df
df <- mtcars[1:6,1:3]
df$car_1 <- rownames(df)
df$car_2 <- rownames(tail(mtcars))

# df to match
mdf <- df[c("car_1","car_2")][3:6,]

rownames(df) <- NULL
rownames(mdf) <- NULL

The desired output would look something like

 mpg cyl disp             car_1          car_2
22.8   4  108        Datsun 710 Ford Pantera L
21.4   6  258    Hornet 4 Drive   Ferrari Dino  
18.7   8  360 Hornet Sportabout  Maserati Bora
18.1   6  225           Valiant     Volvo 142E

This feels like it should be very straight forward.

Any pointer would be highly appreciated, thanks!

Upvotes: 10

Views: 23859

Answers (3)

GKi
GKi

Reputation: 39647

In case you would use match or %in% on multiple columns you could use interaction, paste or use a list to match on multiple columns.

df[match(interaction(mdf), interaction(df[c("car_1", "car_2")])),]

df[match(paste(mdf$car_1, mdf$car_2), paste(df$car_1, df$car_2),),]

df[match(asplit(mdf, 1), asplit(df[c("car_1", "car_2")], 1)),]

df[interaction(df[c("car_1", "car_2")]) %in% interaction(mdf),]

Upvotes: 10

Kara Woo
Kara Woo

Reputation: 3615

How about merge(df, mdf, all.x = FALSE, all.y = TRUE)?

Edit: If you have different column names you can specify which ones to merge on, e.g.:

names(mdf) <- c("car_3", "car_4")
merge(df, mdf, by.x = c("car_1", "car_2"), by.y = c("car_3", "car_4"), 
      all.x = FALSE, all.y = TRUE)

Upvotes: 11

jazzurro
jazzurro

Reputation: 23574

Another way would be:

library(dplyr)
inner_join(df, mdf)

#Joining by: c("car_1", "car_2")
#              car_1          car_2  mpg cyl disp
#1        Datsun 710 Ford Pantera L 22.8   4  108
#2    Hornet 4 Drive   Ferrari Dino 21.4   6  258
#3 Hornet Sportabout  Maserati Bora 18.7   8  360
#4           Valiant     Volvo 142E 18.1   6  225

Upvotes: 7

Related Questions