azumakazuma
azumakazuma

Reputation: 63

Finding Probability of Gaussian Distribution Using Matlab

The original question was to model a lightbulb, which are used 24/7, and usually one lasts 25 days. A box of bulbs contains 12. What is the probability that the box will last longer than a year?

I had to use MATLAB to model a Gaussian curve based on an exponential variable. The code below generates a Gaussian model with mean = 300 and std= sqrt(12)*25. The reason I had to use so many different variables and add them up was because I was supposed to be demonstrating the central limit theorem. The Gaussian curve represents the probability of a box of bulbs lasting for a # of days, where 300 is the average number of days a box will last.

I am having trouble using the gaussian I generated and finding the probability for days >365. The statement 1-normcdf(365,300, sqrt(12)*25) was an attempt to figure out the expected value for the probability, which I got as .2265. Any tips on how to find the probability for days>365 based on the Gaussian I generated would be greatly appreciated.

Thank you!!!

  clear all
samp_num=10000000;
param=1/25;
a=-log(rand(1,samp_num))/param;
b=-log(rand(1,samp_num))/param;
c=-log(rand(1,samp_num))/param;
d=-log(rand(1,samp_num))/param;
e=-log(rand(1,samp_num))/param;
f=-log(rand(1,samp_num))/param;
g=-log(rand(1,samp_num))/param;
h=-log(rand(1,samp_num))/param;
i=-log(rand(1,samp_num))/param;
j=-log(rand(1,samp_num))/param;
k=-log(rand(1,samp_num))/param;
l=-log(rand(1,samp_num))/param;
x=a+b+c+d+e+f+g+h+i+j+k+l;


mean_x=mean(x);
std_x=std(x);
bin_sizex=.01*10/param;
binsx=[0:bin_sizex:800];
u=hist(x,binsx);
u1=u/samp_num;

1-normcdf(365,300, sqrt(12)*25)
bar(binsx,u1)
legend(['mean=',num2str(mean_x),'std=',num2str(std_x)]);

Upvotes: 1

Views: 464

Answers (2)

pjs
pjs

Reputation: 19855

Generate N replicates of x, where N should be several thousand or tens of thousands. Then p-hat = count(x > 365) / N, and has a standard error of sqrt[p-hat * (1 - p-hat) / N]. The larger the number of replications is, the smaller the margin of error will be for the estimate.

When I did this in JMP with N=10,000 I ended up with [0.2039, 0.2199] as a 95% CI for the true proportion of the time that a box of bulbs lasts more than a year. The discrepancy with your value of 0.2265, along with a histogram of the 10,000 outcomes, indicates that actual distribution is still somewhat skewed. In other words, using a CLT approximation for the sum of 12 exponentials is going to give answers that are slightly off.

Upvotes: 0

nivag
nivag

Reputation: 573

[f, y]=ecdf(x) will create an empirical cdf for the data in x. You can then find the probability where it first crosses 365 to get your answer.

Upvotes: 1

Related Questions