mrdaliri
mrdaliri

Reputation: 7358

write a number as sum of a consecutive primes

How to check if n can be partitioned to sum of a sequence of consecutive prime numbers.

For example, 12 is equal to 5+7 which 5 and 7 are consecutive primes, but 20 is equal to 3+17 which 3 and 17 are not consecutive.

Note that, repetition is not allowed.

My idea is to find and list all primes below n, then use 2 loops to sum all primes. The first 2 numbers, second 2 numbers, third 2 numbers etc. and then first 3 numbers, second 3 numbers and so far. But it takes lot of time and memory.

Upvotes: 4

Views: 4998

Answers (5)

Luca Ghidelli
Luca Ghidelli

Reputation: 119

I know that this question is a little old, but I cannot refrain from replying to the analysis made in the previous answers. Indeed, it has been emphasized that all the three proposed algorithms have a run-time that is essentially linear in n. But in fact, it is not difficult to produce an algorithm that runs at a strictly smaller power of n.

To see how, let us choose a parameter K between 1 and n and suppose that the primes we need are already tabulated (if they must be computed from scratch, see below). Then, here is what we are going to do, to search a representation of n as a sum of k consecutive primes:

  • First we search for k<K using the idea present in the answer of Jerry Coffin; that is, we search k primes located around n/k.
  • Then to explore the sums of k>=K primes we use the algorithm explained in the answer of Dialecticus; that is, we begin with a sum whose first element is 2, then we advance the first element one step at a time.

The first part, that concerns short sums of big primes, requires O(log n) operations to binary search one prime close to n/k and then O(k) operations to search for the other k primes (there are a few simple possible implementations). In total this makes a running time

R_1=O(K^2)+O(Klog n).

The second part, that is about long sums of small primes, requires us to consider sums of consecutive primes p_1<\dots<p_k where the first element is at most n/K. Thus, it requires to visit at most n/K+K primes (one can actually save a log factor by a weak version of the prime number theorem). Since in the algorithm every prime is visited at most O(1) times, the running time is

R_2=O(n/K) + O(K).

Now, if log n < K < \sqrt n we have that the first part runs with O(K^2) operations and the second part runs in O(n/K). We optimize with the choice K=n^{1/3}, so that the overall running time is

R_1+R_2=O(n^{2/3}).

If the primes are not tabulated

If we also have to find the primes, here is how we do it. First we use Erathostenes, that in C_2=O(T log log T) operations finds all the primes up to T, where T=O(n/K) is the upper bound for the small primes visited in the second part of the algorithm.

In order to perform the first part of the algorithm we need, for every k<K, to find O(k) primes located around n/k. The Riemann hypothesis implies that there are at least k primes in the interval [x,x+y] if y>c log x (k+\sqrt x) for some constant c>0. Therefore a priori we need to find the primes contained in an interval I_k centered at n/k with width |I_k|= O(k log n)+O(\sqrt {n/k} log n).

Using the sieve Eratosthenes to sieve the interval I_k requires O(|I_k|log log n) + O(\sqrt n) operations. If k<K<\sqrt n we get a time complexity C_1=O(\sqrt n log n log log n) for every k<K.

Summing up, the time complexity C_1+C_2+R_1+R_2 is maximized when

K = n^{1/4} / (log n \sqrt{log log n}).

With this choice have the sublinear time complexity

R_1+R_2+C_1+C_2 = O(n^{3/4}\sqrt{log log n}.

If we do not assume the Riemann Hypothesis we will have to search on larger intervals, but we still get at the end a sublinear time complexity. If instead we assume stronger conjectures on prime gaps, we may only need to search on intervals I_k with width |I_k|=k (log n)^A for some A>0. Then, instead of Erathostenes, we can use other deterministic primality tests. For example, suppose that you can test a single number for primality in O((log n)^B) operations, for some B>0. Then you can search the interval I_k in O(k(log n)^{A+B}) operations. In this case the optimal K is still K\approx n^{1/3}, up to logarithmic factors, and so the total complexity is O(n^{2/3}(log n)^D for some D>0.

Upvotes: 0

j_random_hacker
j_random_hacker

Reputation: 51246

Dialecticus's algorithm is the classic O(m)-time, O(1)-space way to solve this type of problem (here I'll use m to represent the number of prime numbers less than n). It doesn't depend on any mysterious properties of prime numbers. (Interestingly, for the particular case of prime numbers, AlexAlvarez's algorithm is also linear time!) Dialecticus gives a clear and correct description, but seems at a loss to explain why it is correct, so I'll try to do this here. I really think it's valuable to take the time to understand this particular algorithm's proof of correctness: although I had to read a number of explanations before it finally "sank in", it was a real "Aha!" moment when it did! :) (Also, problems that can be efficiently solved in the same manner crop up quite a lot.)

The candidate solutions this algorithm tries can be represented as number ranges (i, j), where i and j are just the indexes of the first and last prime number in a list of prime numbers. The algorithm gets its efficiency by ruling out (that is, not considering) sets of number ranges in two different ways. To prove that it always gives the right answer, we need to show that it never rules out the only range with the right sum. To that end, it suffices to prove that it never rules out the first (leftmost) range with the right sum, which is what we'll do here.

The first rule it applies is that whenever we find a range (i, j) with sum(i, j) > n, we rule out all ranges (i, k) having k > j. It's easy to see why this is justified: the sum can only get bigger as we add more terms, and we have determined that it's already too big.

The second, trickier rule, crucial to the linear time complexity, is that whenever we advance the starting point of a range (i, j) from i to i+1, instead of "starting again" from (i+1, i+1), we start from (i+1, j) -- that is, we avoid considering (i+1, k) for all i+1 <= k < j. Why is it OK to do this? (To put the question the other way: Couldn't it be that doing this causes us to skip over some range with the right sum?)

[EDIT: The original version of the next paragraph glossed over a subtlety: we might have advanced the range end point to j on any previous step.]

To see that it never skips a valid range, we need to think about the range (i, j-1). For the algorithm to advance the starting point of the current range, so that it changes from (i, j) to (i+1, j), it must have been that sum(i, j) > n; and as we will see, to get to a program state in which the range (i, j) is being considered in the first place, it must have been that sum(i, j-1) < n. That second claim is subtle, because there are two different ways to arrive in such a program state: either we just incremented the end point, meaning that the previous range was (i, j-1) and this range was found to be too small (in which case our desired property sum(i, j-1) < n obviously holds); or we just incremented the start point after considering (i-1, j) and finding it to be too large (in which case it's not obvious that the property still holds).

What we do know, however, is that regardless of whether the end point was increased from j-1 to j on the previous step, it was definitely increased at some time before the current step -- so let's call the range that triggered this end point increase (k, j-1). Clearly sum(k, j-1) < n, since this was (by definition) the range that caused us to increase the end point from j-1 to j; and just as clearly k <= i, since we only process ranges in increasing order of their start points. Since i >= k, sum(i, j-1) is just the same as sum(k, j-1) but with zero or more terms removed from the left end, and all of these terms are positive, so it must be that sum(i, j-1) <= sum(k, j-1) < n.

So we have established that whenever we increase i to i+1, we know that sum(i, j-1) < n. To finish the analysis of this rule, what we (again) need to make use of is that dropping terms from either end of this sum can't make it any bigger. Removing the first term leaves us with sum(i+1, j-1) <= sum(i, j-1) < n. Starting from that sum and successively removing terms from the other end leaves us with sum(i+1, j-2), sum(i+1, j-3), ..., sum(i+1, i+1), all of which we know must be less than n -- that is, none of the ranges corresponding to these sums can be valid solutions. Therefore we can safely avoid considering them in the first place, and that's exactly what the algorithm does.

One final potential stumbling block is that it might seem that, since we are advancing two loop indexes, the time complexity should be O(m^2). But notice that every time through the loop body, we advance one of the indexes (i or j) by one, and we never move either of them backwards, so if we are still running after 2m loop iterations we must have i + j = 2m. Since neither index can ever exceed m, the only way for this to hold is if i = j = m, which means that we have reached the end: i.e. we are guaranteed to terminate after at most 2m iterations.

Upvotes: 2

Jerry Coffin
Jerry Coffin

Reputation: 490338

I'd start by noting that for a pair of consecutive primes to sum to the number, one of the primes must be less than N/2, and the other prime must be greater than N/2. For them to be consecutive primes, they must be the primes closest to N/2, one smaller and the other larger.

If you're starting with a table of prime numbers, you basically do a binary search for N/2. Look at the primes immediately larger and smaller than that. Add those numbers together and see if they sum to your target number. If they don't, then it can't be the sum of two consecutive primes.

If you don't start with a table of primes, it works out pretty much the same way--you still start from N/2 and find the next larger prime (we'll call that prime1). Then you subtract N-prime1 to get a candidate for prime2. Check if that's prime, and if it is, search the range prime2...N/2 for other primes to see if there was a prime in between. If there's a prime in between your number is a sum of non-consecutive primes. If there's no other prime in that range, then it is a sum of consecutive primes.

The same basic idea applies for sequences of 3 or more primes, except that (of course) your search starts from N/3 (or whatever number of primes you want to sum to get to the number).

So, for three consecutive primes to sum to N, 2 of the three must be the first prime smaller than N/3 and the first prime larger than N/3. So, we start by finding those, then compute N-(prime1+prime2). That gives use our third candidate. We know these three numbers sum to N. We still need to prove that this third number is a prime. If it is prime, we need to verify that it's consecutive to the other two.

To give a concrete example, for 10 we'd start from 3.333. The next smaller prime is 3 and the next larger is 5. Those add to 8. 10-8 = 2. 2 is prime and consecutive to 3, so we've found the three consecutive primes that add to 10.

There are some other refinements you can make as well. The most obvious would be based on the fact that all primes (other than 2) are odd numbers. Therefore (assuming we can ignore 2), an even number can only be the sum of an even number of primes, and an odd number can only be a sum of an odd number of primes. So, given 123456789, we know immediately that it can't possibly be the sum of 2 (or 4, 6, 8, 10, ...) consecutive primes, so the only candidates to consider are 3, 5, 7, 9, ... primes. Of course, the opposite works as well: given, say, 12345678, the simple fact that it's even lets us immediately rule out the possibility that it could be the sum of 3, 5, 7 or 9 consecutive primes; we only need to consider sequences of 2, 4, 6, 8, ... primes. We violate this basic rule only when we get to a large enough number of primes that we could include 2 as part of the sequence.

I haven't worked through the math to figure out exactly how many that would be be for a given number, but I'm pretty sure it should be fairly easy and it's something we want to know anyway (because it's the upper limit on the number of consecutive primes to look for for a given number). If we use M for the number of primes, the limit should be approximately M <= sqrt(N), but that's definitely only an approximation.

Upvotes: 1

AlexAlvarez
AlexAlvarez

Reputation: 829

The fact that primes have to be consecutive allows to solve quite efficiently this problem in terms of n. Let me suppose that we have previously computed all the primes less or equal than n. Therefore, we can easily compute sum(i) as the sum of the first i primes.

Having this function precomputed, we can loop over the primes less or equal than n and see whether there exists a length such that starting with that prime we can sum up to n. But notice that for a fixed starting prime, the sequence of sums is monotone, so we can binary search over the length.

Thus, let k be the number of primes less or equal than n. Precomputing the sums has cost O(k) and the loop has cost O(klogk), dominating the cost. Using the Prime number theorem, we know that k = O(n/logn), and then the whole algorithm has cost O(n/logn log(n/logn)) = O(n).

Let me put a code in C++ to make it clearer, hope there are not bugs:

#include <iostream>
#include <vector>
using namespace std;

typedef long long ll;

int main() {
  //Get the limit for the numbers
  int MAX_N;
  cin >> MAX_N;

  //Compute the primes less or equal than MAX_N
  vector<bool> is_prime(MAX_N + 1,  true);
  for (int i = 2; i*i <= MAX_N; ++i) {
    if (is_prime[i]) {
      for (int j = i*i; j <= MAX_N; j += i) is_prime[j] = false;
    }
  }
  vector<int> prime;
  for (int i = 2; i <= MAX_N; ++i) if (is_prime[i]) prime.push_back(i);

  //Compute the prefixed sums
  vector<ll> sum(prime.size() + 1, 0);
  for (int i = 0; i < prime.size(); ++i) sum[i + 1] = sum[i] + prime[i];

  //Get the number of queries
  int n_queries;  
  cin >> n_queries;
  for (int z = 1; z <= n_queries; ++z) {
    int n;
    cin >> n;

    //Solve the query
    bool found = false;
    for (int i = 0; i < prime.size() and prime[i] <= n and not found; ++i) {

      //Do binary search over the lenght of the sum:
      //For all x < ini, [i, x] sums <= n
      int ini = i, fin = int(prime.size()) - 1;
      while (ini <= fin) {
        int mid = (ini + fin)/2;
        int value = sum[mid + 1] - sum[i];
        if (value <= n) ini = mid + 1;
        else fin = mid - 1;
      }

      //Check the candidate of the binary search
      int candidate = ini - 1;
      if (candidate >= i and sum[candidate + 1] - sum[i] == n) {
        found = true;
        cout << n << " =";
        for (int j = i; j <= candidate; ++j) {
          cout << " ";
          if (j > i) cout << "+ ";
          cout << prime[j];
        }
        cout << endl;
      }
    }

    if (not found) cout << "No solution" << endl;
  }
}

Sample input:

1000
5
12
20
28
17
29

Sample output:

12 = 5 + 7
No solution
28 = 2 + 3 + 5 + 7 + 11
17 = 2 + 3 + 5 + 7
29 = 29

Upvotes: 1

Dialecticus
Dialecticus

Reputation: 16759

Realize that a consecutive list of primes is defined only by two pieces of information, the starting and the ending prime number. You just have to find these two numbers.

I assume that you have all the primes at your disposal, sorted in the array called primes. Keep three variables in memory: sum which initially is 2 (the smallest prime), first_index and last_index which are initially 0 (index of the smallest prime in array primes).

Now you have to "tweak" these two indices, and "travel" the array along the way in the loop:

If sum == n then finish. You have found your sequence of primes.

If sum < n then enlarge the list by adding next available prime. Increment last_index by one, and then increment sum by the value of new prime, which is primes[last_index]. Repeat the loop. But if primes[last_index] is larger than n then there is no solution, and you must finish.

If sum > n then reduce the list by removing the smallest prime from the list. Decrement sum by that value, which is primes[first_index], and then increment first_index by one. Repeat the loop.

Upvotes: 3

Related Questions