Reputation: 6255
using Yield = asio::yield_context;
using boost::system::error_code;
int Func(Yield yield) {
error_code ec;
asio::detail::async_result_init<Yield, void(error_code, int)> init(yield[ec]);
std::thread th(std::bind(Process, init.handler));
int result = init.result.get(); // <--- yield at here
return result;
}
How to implement Process
so that Func
will resumed in the context of the strand that Func
was originally spawned on?
Upvotes: 4
Views: 3617
Reputation: 601
Here's an updated example for Boost 1.66.0 based on Tanner's great answer:
#include <iostream> // std::cout, std::endl
#include <chrono> // std::chrono::seconds
#include <functional> // std::bind
#include <thread> // std::thread
#include <utility> // std::forward
#include <boost/asio.hpp>
#include <boost/asio/spawn.hpp>
template <typename Signature, typename CompletionToken>
auto async_add_one(CompletionToken token, int value) {
// Initialize the async completion handler and result
// Careful to make sure token is a copy, as completion's handler takes a reference
using completion_type = boost::asio::async_completion<CompletionToken, Signature>;
completion_type completion{ token };
std::cout << "Spawning thread" << std::endl;
std::thread([handler = completion.completion_handler, value]() {
// The handler will be dispatched to the coroutine's strand.
// As this thread is not running within the strand, the handler
// will actually be posted, guaranteeing that yield will occur
// before the resume.
std::cout << "Resume coroutine" << std::endl;
// separate using statement is important
// as asio_handler_invoke is overloaded based on handler's type
using boost::asio::asio_handler_invoke;
asio_handler_invoke(std::bind(handler, value + 1), &handler);
}).detach();
// Demonstrate that the handler is serialized through the strand by
// allowing the thread to run before suspending this coroutine.
std::this_thread::sleep_for(std::chrono::seconds(2));
// Yield the coroutine. When this yields, execution transfers back to
// a handler that is currently in the strand. The handler will complete
// allowing other handlers that have been posted to the strand to run.
std::cout << "Suspend coroutine" << std::endl;
return completion.result.get();
}
int main() {
boost::asio::io_context io_context;
boost::asio::spawn(
io_context,
[&io_context](boost::asio::yield_context yield) {
// Here is your coroutine
// The coroutine itself is not work, so guarantee the io_context
// has work while the coroutine is running
const auto work = boost::asio::make_work_guard(io_context);
// add one to zero
const auto result = async_add_one<void(int)>(yield, 0);
std::cout << "Got: " << result << std::endl; // Got: 1
// add one to one forty one
const auto result2 = async_add_one<void(int)>(yield, 41);
std::cout << "Got: " << result2 << std::endl; // Got: 42
}
);
std::cout << "Running" << std::endl;
io_context.run();
std::cout << "Finish" << std::endl;
}
Output:
Running
Spawning thread
Resume coroutine
Suspend coroutine
Got: 1
Spawning thread
Resume coroutine
Suspend coroutine
Got: 42
Finish
Remarks:
completion.result.get
) will have the associated CompletionToken give up its underlying strong reference. Which can eventually lead to unexpected early termination of the coroutine.using boost::asio::asio_handler_invoke
statement is really important. An explicit call can prevent the correct overload from being invoked.-
I'll also mention that our application ended up with two io_context's which a coroutine may interact with. Specifically one context for I/O bound work, the other for CPU. Using an explicit strand with boost::asio::spawn
ended up giving us well defined control over the context in which the coroutine would run/resume. This helped us avoid sporadic BOOST_ASSERT( ! is_running() ) failures.
Creating a coroutine with an explicit strand:
auto strand = std::make_shared<strand_type>(io_context.get_executor());
boost::asio::spawn(
*strand,
[&io_context, strand](yield_context_type yield) {
// coroutine
}
);
with invocation explicitly dispatching to the strand (multi io_context world):
boost::asio::dispatch(*strand, [handler = completion.completion_handler, value] {
using boost::asio::asio_handler_invoke;
asio_handler_invoke(std::bind(handler, value), &handler);
});
-
We also found that using future's in the async_result signature allows for exception propagation back to the coroutine on resumption.
using bound_function = void(std::future<RETURN_TYPE>);
using completion_type = boost::asio::async_completion<yield_context_type, bound_function>;
with yield being:
auto future = completion.result.get();
return future.get(); // may rethrow exception in your coroutine's context
Upvotes: 5
Reputation: 51931
Boost.Asio uses a helper function, asio_handler_invoke
, to provide a customization point for invocation strategies. For example, when a Handler has been wrapped by a strand
, the invocation strategy will cause the handler to be dispatched through the strand
upon invocation. As noted in the documentation, asio_handler_invoke
should be invoked via argument-dependent lookup.
using boost::asio::asio_handler_invoke;
asio_handler_invoke(nullary_functor, &handler);
For stackful coroutines, there are various important details to take into consideration when yielding the coroutine and when invoking the handler_type
associated with a yield_context
to resume the coroutine:
strand
associated with the coroutine. Essentially, a simple handler is wrapped by the strand
that resumes the coroutine, causing execution to jump to the coroutine, blocking the handler currently in the strand
. When the coroutine yields, execution jumps back to the strand
handler, allowing it to complete.spawn()
adds work to the io_service
(a handler that will start and jump to the coroutine), the coroutine itself is not work. To prevent the io_service
event loop from ending while a coroutine is outstanding, it may be necessary to add work to the io_service
before yielding.strand
to help guarantee the coroutine yields before resume is invoked. Asio 1.10.6 / Boost 1.58 enabled being able to safely invoke the completion handler from within the initiating function. Prior versions required that the completion handler was not invoked from within the initiating function, as its invocation strategy would dispatch()
, causing the coroutine to attempt resumption before being suspended.Here is a complete example that accounts for these details:
#include <iostream> // std::cout, std::endl
#include <chrono> // std::chrono::seconds
#include <functional> // std::bind
#include <thread> // std::thread
#include <utility> // std::forward
#include <boost/asio.hpp>
#include <boost/asio/spawn.hpp>
template <typename CompletionToken, typename Signature>
using handler_type_t = typename boost::asio::handler_type<
CompletionToken, Signature>::type;
template <typename Handler>
using async_result = boost::asio::async_result<Handler>;
/// @brief Helper type used to initialize the asnyc_result with the handler.
template <typename CompletionToken, typename Signature>
struct async_completion
{
typedef handler_type_t<CompletionToken, Signature> handler_type;
async_completion(CompletionToken&& token)
: handler(std::forward<CompletionToken>(token)),
result(handler)
{}
handler_type handler;
async_result<handler_type> result;
};
template <typename Signature, typename CompletionToken>
typename async_result<
handler_type_t<CompletionToken, Signature>
>::type
async_func(CompletionToken&& token, boost::asio::io_service& io_service)
{
// The coroutine itself is not work, so guarantee the io_service has
// work.
boost::asio::io_service::work work(io_service);
// Initialize the async completion handler and result.
async_completion<CompletionToken, Signature> completion(
std::forward<CompletionToken>(token));
auto handler = completion.handler;
std::cout << "Spawning thread" << std::endl;
std::thread([](decltype(handler) handler)
{
// The handler will be dispatched to the coroutine's strand.
// As this thread is not running within the strand, the handler
// will actually be posted, guaranteeing that yield will occur
// before the resume.
std::cout << "Resume coroutine" << std::endl;
using boost::asio::asio_handler_invoke;
asio_handler_invoke(std::bind(handler, 42), &handler);
}, handler).detach();
// Demonstrate that the handler is serialized through the strand by
// allowing the thread to run before suspending this coroutine.
std::this_thread::sleep_for(std::chrono::seconds(2));
// Yield the coroutine. When this yields, execution transfers back to
// a handler that is currently in the strand. The handler will complete
// allowing other handlers that have been posted to the strand to run.
std::cout << "Suspend coroutine" << std::endl;
return completion.result.get();
}
int main()
{
boost::asio::io_service io_service;
boost::asio::spawn(io_service,
[&io_service](boost::asio::yield_context yield)
{
auto result = async_func<void(int)>(yield, io_service);
std::cout << "Got: " << result << std::endl;
});
std::cout << "Running" << std::endl;
io_service.run();
std::cout << "Finish" << std::endl;
}
Output:
Running
Spawning thread
Resume coroutine
Suspend coroutine
Got: 42
Finish
For much more details, please consider reading Library Foundations for
Asynchronous Operations. It provides much greater detail into the composition of asynchronous operations, how Signature
affects async_result
, and the overall design of async_result
, handler_type
, and async_completion
.
Upvotes: 9
Reputation: 6255
using CallbackHandler = boost::asio::handler_type<Yield, void (error_code, int)>::type;
void Process(CallbackHandler handler) {
int the_result = 81;
boost::asio::detail::asio_handler_invoke(
std::bind(handler, error_code(), the_result), &handler);
}
Hinted by @sehe, I made the above working solution. But I am not sure if this is the right/idiomatic/best way to do that. Welcome to comment/edit this answer.
Upvotes: 0
Reputation: 393497
You are complicating things by creating threads out of the executor framework provided by Boost Asio.
For this reason you shouldn't assume that what you want is possible. I strongly suggest just adding more threads to the io_service
and letting it manage the strands for you.
Or, you can extend the library and add the new feature you apparently want. If so, it's a good idea to contact the developer mailing list for advice. Perhaps they welcome this feature¹?
¹ (that you, interestingly, have not described, so I won't ask what the purpose of it is)
Upvotes: 0