Adam_G
Adam_G

Reputation: 7879

Normalizing a list of numbers in Python

I need to normalize a list of values to fit in a probability distribution, i.e. between 0.0 and 1.0.

I understand how to normalize, but was curious if Python had a function to automate this.

I'd like to go from:

raw = [0.07, 0.14, 0.07]  

to

normed = [0.25, 0.50, 0.25]

Upvotes: 64

Views: 191518

Answers (11)

Jeff Hykin
Jeff Hykin

Reputation: 2637

Here is a not-terribly-inefficient one liner similar to the top answer (only performs summation once)

norm = (lambda the_sum:[float(i)/the_sum for i in raw])(sum(raw))

A similar method can be done for a list with negative numbers

norm = (lambda the_max, the_min: [(float(i)-the_min)/(the_max-the_min) for i in raw])(max(raw),min(raw))

Upvotes: 1

keramat
keramat

Reputation: 4543

Use scikit-learn:

from sklearn.preprocessing import MinMaxScaler
data = np.array([1,2,3]).reshape(-1, 1)
scaler = MinMaxScaler()
scaler.fit(data)
print(scaler.transform(data))

Upvotes: 0

Anh-Thi DINH
Anh-Thi DINH

Reputation: 2374

For ones who wanna use scikit-learn, you can use

from sklearn.preprocessing import normalize

x = [1,2,3,4]
normalize([x]) # array([[0.18257419, 0.36514837, 0.54772256, 0.73029674]])
normalize([x], norm="l1") # array([[0.1, 0.2, 0.3, 0.4]])
normalize([x], norm="max") # array([[0.25, 0.5 , 0.75, 1.]])

Upvotes: 12

vespertine venus
vespertine venus

Reputation: 121

If working with data, many times pandas is the simple key

This particular code will put the raw into one column, then normalize by column per row. (But we can put it into a row and do it by row per column, too! Just have to change the axis values where 0 is for row and 1 is for column.)

import pandas as pd


raw = [0.07, 0.14, 0.07]  

raw_df = pd.DataFrame(raw)
normed_df = raw_df.div(raw_df.sum(axis=0), axis=1)
normed_df

where normed_df will display like:

    0
0   0.25
1   0.50
2   0.25

and then can keep playing with the data, too!

Upvotes: 2

Tengerye
Tengerye

Reputation: 1964

If you consider using numpy, you can get a faster solution.

import random, time
import numpy as np

a = random.sample(range(1, 20000), 10000)
since = time.time(); b = [i/sum(a) for i in a]; print(time.time()-since)
# 0.7956490516662598

since = time.time(); c=np.array(a);d=c/sum(a); print(time.time()-since)
# 0.001413106918334961

Upvotes: 4

Tony Suffolk 66
Tony Suffolk 66

Reputation: 9714

Use :

norm = [float(i)/sum(raw) for i in raw]

to normalize against the sum to ensure that the sum is always 1.0 (or as close to as possible).

use

norm = [float(i)/max(raw) for i in raw]

to normalize against the maximum

Upvotes: 116

blaylockbk
blaylockbk

Reputation: 3351

if your list has negative numbers, this is how you would normalize it

a = range(-30,31,5)
norm = [(float(i)-min(a))/(max(a)-min(a)) for i in a]

Upvotes: 19

Nurul Akter Towhid
Nurul Akter Towhid

Reputation: 3246

Try this :

from __future__ import division

raw = [0.07, 0.14, 0.07]  

def norm(input_list):
    norm_list = list()

    if isinstance(input_list, list):
        sum_list = sum(input_list)

        for value in input_list:
            tmp = value  /sum_list
            norm_list.append(tmp) 

    return norm_list

print norm(raw)

This will do what you asked. But I will suggest to try Min-Max normalization.

min-max normalization :

def min_max_norm(dataset):
    if isinstance(dataset, list):
        norm_list = list()
        min_value = min(dataset)
        max_value = max(dataset)

        for value in dataset:
            tmp = (value - min_value) / (max_value - min_value)
            norm_list.append(tmp)

    return norm_list

Upvotes: 3

gboffi
gboffi

Reputation: 25053

How long is the list you're going to normalize?

def psum(it):
    "This function makes explicit how many calls to sum() are done."
    print "Another call!"
    return sum(it)

raw = [0.07,0.14,0.07]
print "How many calls to sum()?"
print [ r/psum(raw) for r in raw]

print "\nAnd now?"
s = psum(raw)
print [ r/s for r in raw]

# if one doesn't want auxiliary variables, it can be done inside
# a list comprehension, but in my opinion it's quite Baroque    
print "\nAnd now?"
print [ r/s  for s in [psum(raw)] for r in raw]

Output

# How many calls to sum()?
# Another call!
# Another call!
# Another call!
# [0.25, 0.5, 0.25]
# 
# And now?
# Another call!
# [0.25, 0.5, 0.25]
# 
# And now?
# Another call!
# [0.25, 0.5, 0.25]

Upvotes: 7

wnnmaw
wnnmaw

Reputation: 5534

There isn't any function in the standard library (to my knowledge) that will do it, but there are absolutely modules out there which have such functions. However, its easy enough that you can just write your own function:

def normalize(lst):
    s = sum(lst)
    return map(lambda x: float(x)/s, lst)

Sample output:

>>> normed = normalize(raw)
>>> normed
[0.25, 0.5, 0.25]

Upvotes: 4

Anzel
Anzel

Reputation: 20563

try:

normed = [i/sum(raw) for i in raw]

normed
[0.25, 0.5, 0.25]

Upvotes: 6

Related Questions