Reputation:
Given this DataFrame:
df = pandas.DataFrame({"a": [1,10,20,3,10], "b": [50,60,55,0,0], "c": [1,30,1,0,0]})
What is the best way to make a new column, "filter" that has value "pass" if the values at columns a
and b
are both greater than x and value "fail" otherwise?
It can be done by iterating through rows but it's inefficient and inelegant:
c = []
for x, v in df.iterrows():
if v["a"] >= 20 and v["b"] >= 20:
c.append("pass")
else:
c.append("fail")
df["filter"] = c
Upvotes: 2
Views: 12477
Reputation: 176730
One way would be to create a column of boolean values like this:
>>> df['filter'] = (df['a'] >= 20) & (df['b'] >= 20)
a b c filter
0 1 50 1 False
1 10 60 30 False
2 20 55 1 True
3 3 0 0 False
4 10 0 0 False
You can then change the boolean values to 'pass' or 'fail' using replace
:
>>> df['filter'].astype(object).replace({False: 'fail', True: 'pass'})
0 fail
1 fail
2 pass
3 fail
4 fail
You can extend this to more columns using all
. For example, to find rows across the columns with entries greater than 0:
>>> cols = ['a', 'b', 'c'] # a list of columns to test
>>> df[cols] > 0
a b c
0 True True True
1 True True True
2 True True True
3 True False False
4 True False False
Using all
across axis 1 of this DataFrame creates the new column:
>>> (df[cols] > 0).all(axis=1)
0 True
1 True
2 True
3 False
4 False
dtype: bool
Upvotes: 12