Reputation: 2475
Say I have a Pandas DataFrame and I want to obtain a list of tuples of the form [(index1, column1), (index2, column2) ...] describing the locations of all elements of the DataFrame where some condition is true. For example:
x = pd.DataFrame(np.random.normal(0, 1, (4,4)), index=['a', 'b', 'c', 'd'],
columns=['e', 'f', 'g', 'h'])
x
e f g h
a -1.342571 -0.274879 -0.903354 -1.458702
b -1.521502 -1.135800 -1.147913 1.829485
c -1.199857 0.458135 -1.993701 -0.878301
d 0.485599 0.286608 -0.436289 -0.390755
y = x > 0
Is there any way to obtain:
x.loc[y]
To return:
[(b, h), (c,f), (d, e), (d,f)]
Or some equivalent? Evidently, I can do:
postup = []
for i in x.index:
for j in x.columns:
if x.loc[i, j] > 0:
postup.append((i, j))
But I imagine something better may be possible / already implemented. In matlab the function find combined with sub2ind do the job.
Upvotes: 20
Views: 6554
Reputation: 671
If you want a single tuple for each row index:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.normal(0, 1, (4,4)), index=['a', 'b', 'c', 'd'], columns=['e', 'f', 'g', 'h'])
# build column replacement
column_dict = {}
for col in [{col: {True: col}} for col in df.columns]:
column_dict.update(col)
# replace where > 0
df = (df>0).replace(to_replace=column_dict)
# convert to tuples and drop 'False' values
[tuple(y for y in x if y != False) for x in df.to_records()]
Upvotes: 2
Reputation: 12039
My approach uses MultiIndex
:
#make it a multi-indexed Series
stacked = y.stack()
#restrict to where it's True
true_stacked = stacked[stacked]
#get index as a list of tuples
result = true_stacked.index.tolist()
Upvotes: 3