Reputation: 5966
Given a sequence which contains only various amounts of the numbers 1, 2, 3, and 4 (examples: 13244, 4442, etc), I want to count all its permutations such that no two adjacent numbers are the same. I believe it is O(N! * N) and want to know if there is a better one out there. Anyone have any ideas?
class Ideone
{
static int permutationCount++;
public static void main(String[] args) {
String str = "442213";
permutation("", str);
System.out.println(permutationCount);
}
private static void permutation(String prefix, String str) {
int n = str.length();
if (n == 0){
boolean bad = false;
//Check whether there are repeating adjacent characters
for(int i = 0; i < prefix.length()-1; i++){
if(prefix.charAt(i)==prefix.charAt(i+1))
bad = true;
}
if(!bad){
permutationCount++;
}
}
else {
//Recurse through permutations
for (int i = 0; i < n; i++)
permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i+1, n));
}
}
}
Upvotes: 4
Views: 5600
Reputation: 3031
I understand your question like this: Given a string containing only numbers 1,2,3,4 - how many permutations of these characters exist that when you put them into string again there won't be any same adjecent numbers.
I would suggest this approach:
L - length of your string
n1 - how many times is 1 repeated, n2 - how many times is 2 repeated etc.
P - number of all possible permutations
P = L! / (n1!*n2!*n3!*n4!)
C - number of all solutions fitting your constraint
C = P - start with all permutations
substract all permutations which have 11 in it (just take 11 as one number)
C = C - (L - 1)! / ((n1 - 1)! * n2! * n3! * n4!)
... do the same for 22 ...
add all permutations which have both 11 and 22 in it (because we have substracted them twice, so you need to add them)
C = C + (L - 2)! / ((n1 - 1)! * (n2 - 1)! * n3! * n4!)
... repeat previous steps for 33 and 44 ...
Upvotes: 2
Reputation: 1715
Edit: After your edits and comments it is clear that I misunderstood the question.
If you just want to check to see if there are no matching adjacent numbers, then you can use a simple loop. This will be O(n) complexity.
public static void main(String[] args) {
String str = "442213";
System.out.println(permutation(str));
}
public static int permutation(String str) {
int permutationCount = 0;
if (str.length() > 1) {
for (int i = 0; i < str.length() - 1; i++) {
if (str.charAt(i) != str.charAt(i + 1)) {
permutationCount++;
}
}
}
return permutationCount;
}
If you wanted to stick with recursion, you could do something like this:
public static void main(String[] args) {
String str = "442213";
System.out.println(permutation(str, 0));
}
public static int permutation(String str, int currentIndex) {
int permutationCount = 0;
if (str == null || currentIndex + 1 >= str.length()) {
return permutationCount;
}
if (str.charAt(currentIndex) != str.charAt(currentIndex + 1)) {
permutationCount = 1;
}
return permutationCount + permutation(str, currentIndex + 1);
}
Upvotes: 0
Reputation: 20889
If you just want to calculate how many permutations match your constraint, it is not required to spell each of them out.
If I get your question right, your input string has 4 distinct input characters 1,2,3,4
and you want to know how many permutations of this are possible?
Then you should use some maths, namely n! / (n-r)!
, where n
is the number of elements to choose from (4 in this case) and r
is the number of positions you want to fill (also 4).
Your example would have 4! / (4-4)! = 24
permutations possible:
{1,2,3,4} {1,2,4,3} {1,3,2,4} {1,3,4,2} {1,4,2,3} {1,4,3,2}
{2,1,3,4} {2,1,4,3} {2,3,1,4} {2,3,4,1} {2,4,1,3} {2,4,3,1}
{3,1,2,4} {3,1,4,2} {3,2,1,4} {3,2,4,1} {3,4,1,2} {3,4,2,1}
{4,1,2,3} {4,1,3,2} {4,2,1,3} {4,2,3,1} {4,3,1,2} {4,3,2,1}
In a nutshell, for length n
with n
distinct values the count of permutations is n!
:
1 -> 1
2 -> 2
3 -> 6
4 -> 24
5 -> 120
...
Upvotes: 0