the swine
the swine

Reputation: 11031

Sorting a pair of vectors

I know how to sort a vector of pairs, but how do you sort a pair of vectors? I can think of writing a custom "virtual" iterator over a pair of vectors and sorting that, but that seems quite complex. Is there an easier way? Is there one in C++03? I would like to use std::sort.

This problem arises when processing some data generated in hardware, where a pair of arrays makes more sense than array of pairs (since then there would be all kinds of stride and alignment problems). I realize that otherwise keeping a pair of vector instead of a vector of pairs would be a design flaw (the structure of arrays problem). I'm looking for a fast solution, copying the data to a vector of pairs and then back (I will return it to the HW to do more processing) is not an option.

Example:

keys   = {5, 2, 3, 1, 4}
values = {a, b, d, e, c}

and after sorting (by the first vector):

keys   = {1, 2, 3, 4, 5}
values = {e, b, d, c, a}

I refer to a "pair of vectors" as the pair of keys and values (stored as e.g. std::pair<std::vector<size_t>, std::vector<double> >). The vectors have the same length.

Upvotes: 10

Views: 1389

Answers (4)

the swine
the swine

Reputation: 11031

Just for comparison, this is how much code the split iterator approach requires:

template <class V0, class V1>
class CRefPair { // overrides copy semantics of std::pair
protected:
    V0 &m_v0;
    V1 &m_v1;

public:
    CRefPair(V0 &v0, V1 &v1)
        :m_v0(v0), m_v1(v1)
    {}

    void swap(CRefPair &other)
    {
        std::swap(m_v0, other.m_v0);
        std::swap(m_v1, other.m_v1);
    }

    operator std::pair<V0, V1>() const // both g++ and msvc sort requires this (to get a pivot)
    {
        return std::pair<V0, V1>(m_v0, m_v1);
    }

    CRefPair &operator =(std::pair<V0, V1> v) // both g++ and msvc sort requires this (for insertion sort)
    {
        m_v0 = v.first;
        m_v1 = v.second;
        return *this;
    }

    CRefPair &operator =(const CRefPair &other) // required by g++ (for _GLIBCXX_MOVE)
    {
        m_v0 = other.m_v0;
        m_v1 = other.m_v1;
        return *this;
    }
};

template <class V0, class V1>
inline bool operator <(std::pair<V0, V1> a, CRefPair<V0, V1> b) // required by both g++ and msvc
{
    return a < std::pair<V0, V1>(b); // default pairwise lexicographical comparison
}

template <class V0, class V1>
inline bool operator <(CRefPair<V0, V1> a, std::pair<V0, V1> b) // required by both g++ and msvc
{
    return std::pair<V0, V1>(a) < b; // default pairwise lexicographical comparison
}

template <class V0, class V1>
inline bool operator <(CRefPair<V0, V1> a, CRefPair<V0, V1> b) // required by both g++ and msvc
{
    return std::pair<V0, V1>(a) < std::pair<V0, V1>(b); // default pairwise lexicographical comparison
}

namespace std {

template <class V0, class V1>
inline void swap(CRefPair<V0, V1> &a, CRefPair<V0, V1> &b)
{
    a.swap(b);
}

} // ~std

template <class It0, class It1>
class CPairIterator : public std::random_access_iterator_tag {
public:
    typedef typename std::iterator_traits<It0>::value_type value_type0;
    typedef typename std::iterator_traits<It1>::value_type value_type1;
    typedef std::pair<value_type0, value_type1> value_type;
    typedef typename std::iterator_traits<It0>::difference_type difference_type;
    typedef /*typename std::iterator_traits<It0>::distance_type*/difference_type distance_type; // no distance_type in g++, only in msvc
    typedef typename std::iterator_traits<It0>::iterator_category iterator_category;
    typedef CRefPair<value_type0, value_type1> reference;
    typedef reference *pointer; // not so sure about this, probably can't be implemented in a meaningful way, won't be able to overload ->
    // keep the iterator traits happy

protected:
    It0 m_it0;
    It1 m_it1;

public:
    CPairIterator(const CPairIterator &r_other)
        :m_it0(r_other.m_it0), m_it1(r_other.m_it1)
    {}

    CPairIterator(It0 it0 = It0(), It1 it1 = It1())
        :m_it0(it0), m_it1(it1)
    {}

    reference operator *()
    {
        return reference(*m_it0, *m_it1);
    }

    value_type operator *() const
    {
        return value_type(*m_it0, *m_it1);
    }

    difference_type operator -(const CPairIterator &other) const
    {
        assert(m_it0 - other.m_it0 == m_it1 - other.m_it1);
        // the iterators always need to have the same position
        // (incomplete check but the best we can do without having also begin / end in either vector)

        return m_it0 - other.m_it0;
    }

    bool operator ==(const CPairIterator &other) const
    {
        assert(m_it0 - other.m_it0 == m_it1 - other.m_it1);
        return m_it0 == other.m_it0;
    }

    bool operator !=(const CPairIterator &other) const
    {
        return !(*this == other);
    }

    bool operator <(const CPairIterator &other) const
    {
        assert(m_it0 - other.m_it0 == m_it1 - other.m_it1);
        return m_it0 < other.m_it0;
    }

    bool operator >=(const CPairIterator &other) const
    {
        return !(*this < other);
    }

    bool operator <=(const CPairIterator &other) const
    {
        return !(other < *this);
    }

    bool operator >(const CPairIterator &other) const
    {
        return other < *this;
    }

    CPairIterator operator +(distance_type d) const
    {
        return CPairIterator(m_it0 + d, m_it1 + d);
    }

    CPairIterator operator -(distance_type d) const
    {
        return *this + -d;
    }

    CPairIterator &operator +=(distance_type d)
    {
        return *this = *this + d;
    }

    CPairIterator &operator -=(distance_type d)
    {
        return *this = *this + -d;
    }

    CPairIterator &operator ++()
    {
        return *this += 1;
    }

    CPairIterator &operator --()
    {
        return *this += -1;
    }

    CPairIterator operator ++(int) // msvc sort actually needs this, g++ does not
    {
        CPairIterator old = *this;
        ++ (*this);
        return old;
    }

    CPairIterator operator --(int)
    {
        CPairIterator old = *this;
        -- (*this);
        return old;
    }
};

template <class It0, class It1>
inline CPairIterator<It0, It1> make_pair_iterator(It0 it0, It1 it1)
{
    return CPairIterator<It0, It1>(it0, it1);
}

It is kind of rough around the edges, maybe I'm just bad at overloading the comparisons, but the amount of differences needed to support different implementations of std::sort makes me think the hackish solution might actually be more portable. But the sorting is much nicer:

struct CompareByFirst {
    bool operator ()(std::pair<size_t, char> a, std::pair<size_t, char> b) const
    {
        return a.first < b.first;
    }
};

std::vector<char> vv; // filled by values
std::vector<size_t> kv; // filled by keys

std::sort(make_pair_iterator(kv.begin(), vv.begin()),
    make_pair_iterator(kv.end(), vv.end()), CompareByFirst());
// nice

And of course it gives the correct result.

Upvotes: 4

sehe
sehe

Reputation: 392893

Let's make a sort/permute iterator, so that we can just say:

int  keys[] = {   5,   2,   3,   1,   4 };
char vals[] = { 'a', 'b', 'd', 'e', 'c' };

std::sort(make_dual_iter(begin(keys), begin(vals)), 
          make_dual_iter(end(keys), end(vals)));

// output
std::copy(begin(keys), end(keys), std::ostream_iterator<int> (std::cout << "\nKeys:\t",   "\t"));
std::copy(begin(vals), end(vals), std::ostream_iterator<char>(std::cout << "\nValues:\t", "\t"));

See it Live On Coliru, printing

Keys:   1   2   3   4   5   
Values: e   b   d   c   a   

Based on the idea here, I've implemented this:

namespace detail {
    template <class KI, class VI> struct helper { 
        using value_type = boost::tuple<typename std::iterator_traits<KI>::value_type, typename std::iterator_traits<VI>::value_type>;
        using ref_type   = boost::tuple<typename std::iterator_traits<KI>::reference,  typename std::iterator_traits<VI>::reference>; 

        using difference_type = typename std::iterator_traits<KI>::difference_type;
    };
}

template <typename KI, typename VI, typename H = typename detail::helper<KI, VI> > 
class dual_iter : public boost::iterator_facade<dual_iter<KI, VI>, // CRTP
    typename H::value_type, std::random_access_iterator_tag, typename H::ref_type, typename H::difference_type> 
{ 
public: 
    dual_iter() = default;
    dual_iter(KI ki, VI vi) : _ki(ki), _vi(vi) { } 

    KI _ki; 
    VI _vi; 

private: 
    friend class boost::iterator_core_access; 

    void increment() { ++_ki; ++_vi; } 
    void decrement() { --_ki; --_vi; } 

    bool equal(dual_iter const& other) const { return (_ki == other._ki); } 

    typename detail::helper<KI, VI>::ref_type dereference() const { 
        return (typename detail::helper<KI, VI>::ref_type(*_ki, *_vi)); 
    } 

    void advance(typename H::difference_type n) { _ki += n; _vi += n; } 
    typename H::difference_type distance_to(dual_iter const& other) const { return ( other._ki - _ki); } 
}; 

Now the factory function is simply:

template <class KI, class VI> 
    dual_iter<KI, VI> make_dual_iter(KI ki, VI vi) { return {ki, vi}; }

Note I've been a little lazy by using boost/tuples/tuple_comparison.hpp for the sorting. This could pose a problem with stable sort when multiple key values share the same value. However, in this case it's hard to define what is "stable" sort anyways, so I didn't think it important for now.

FULL LISTING

Live On Coliru

#include <boost/iterator/iterator_adaptor.hpp>
#include <boost/tuple/tuple_comparison.hpp>

namespace boost { namespace tuples {

    // MSVC might not require this
    template <typename T, typename U>
    inline void swap(boost::tuple<T&, U&> a, boost::tuple<T&, U&> b) noexcept {
        using std::swap;
        swap(boost::get<0>(a), boost::get<0>(b));
        swap(boost::get<1>(a), boost::get<1>(b));
    }

} }

namespace detail {
    template <class KI, class VI> struct helper { 
        using value_type = boost::tuple<typename std::iterator_traits<KI>::value_type, typename std::iterator_traits<VI>::value_type>;
        using ref_type   = boost::tuple<typename std::iterator_traits<KI>::reference,  typename std::iterator_traits<VI>::reference>; 

        using difference_type = typename std::iterator_traits<KI>::difference_type;
    };
}

template <typename KI, typename VI, typename H = typename detail::helper<KI, VI> > 
class dual_iter : public boost::iterator_facade<dual_iter<KI, VI>, // CRTP
    typename H::value_type, std::random_access_iterator_tag, typename H::ref_type, typename H::difference_type> 
{ 
public: 
    dual_iter() = default;
    dual_iter(KI ki, VI vi) : _ki(ki), _vi(vi) { } 

    KI _ki; 
    VI _vi; 

private: 
    friend class boost::iterator_core_access; 

    void increment() { ++_ki; ++_vi; } 
    void decrement() { --_ki; --_vi; } 

    bool equal(dual_iter const& other) const { return (_ki == other._ki); } 

    typename detail::helper<KI, VI>::ref_type dereference() const { 
        return (typename detail::helper<KI, VI>::ref_type(*_ki, *_vi)); 
    } 

    void advance(typename H::difference_type n) { _ki += n; _vi += n; } 
    typename H::difference_type distance_to(dual_iter const& other) const { return ( other._ki - _ki); } 
}; 

template <class KI, class VI> 
    dual_iter<KI, VI> make_dual_iter(KI ki, VI vi) { return {ki, vi}; }

#include <iostream>
using std::begin;
using std::end;

int main()
{
    int  keys[] = {   5,   2,   3,   1,   4 };
    char vals[] = { 'a', 'b', 'd', 'e', 'c' };

    std::sort(make_dual_iter(begin(keys), begin(vals)), 
              make_dual_iter(end(keys), end(vals)));

    std::copy(begin(keys), end(keys), std::ostream_iterator<int> (std::cout << "\nKeys:\t",   "\t"));
    std::copy(begin(vals), end(vals), std::ostream_iterator<char>(std::cout << "\nValues:\t", "\t"));
}

Upvotes: 7

davidhigh
davidhigh

Reputation: 15468

Here is a solution I once used to sort an array together with an array of indices (--maybe it is from somewhere over here?):

template <class iterator>
class IndexComparison
{
public:
    IndexComparison (iterator const& _begin, iterator const& _end) :
      begin (_begin),
      end (_end)
    {}

    bool operator()(size_t a, size_t b) const
    {
        return *std::next(begin,a) < *std::next(begin,b);
    }

private:
    const iterator begin;
    const iterator end;
};

Usage:

std::vector<int> values{5,2,5,1,9};
std::vector<size_t> indices(values.size());
std::iota(indices.begin(),indices.end(),0);

std::sort(indices.begin(),indices.end()
        , IndexComparison<decltype(values.cbegin())>(values.cbegin(),values.cend()));

Afterwards, the integers in vector indices are permuted such that they correspond to increasing values in the vector values. It is easy to extend this from less-comparison to general comparison functions.

Next, in order to sort also the values, you can do another

std::sort(values.begin(),values.end());

using the same comparison function. This is the solution for the lazy ones. Of course, you can alternatively also use the sorted indices according to

auto temp=values;
for(size_t i=0;i<indices.size();++i)
{
     values[i]=temp[indices[i]];
}

DEMO


EDIT: I just realized that the above sorts into the opposite direction than the one you were asking for.

Upvotes: 2

the swine
the swine

Reputation: 11031

Inspired by a comment by Mark Ransom, this is a horrible hack, and an example of how not to do it. I only wrote it for amusement and because I was wondering how complicated would it get. This is not an answer to my question, I will not use this. I just wanted to share a bizarre idea. Please, do not downvote.

Actually, ignoring multithreading, I believe this could be done:

template <class KeyType, class ValueVectorType>
struct MyKeyWrapper { // all is public to save getters
    KeyType k;
    bool operator <(const MyKeyWrapper &other) const { return k < other.k; }
};

template <class KeyType, class ValueVectorType>
struct ValueVectorSingleton { // all is public to save getters, but kv and vv should be only accessible by getters
    static std::vector<MyKeyWrapper<KeyType, ValueVectorType> > *kv;
    static ValueVectorType *vv;

    static void StartSort(std::vector<MyKeyWrapper<KeyType, ValueVectorType> > &_kv, ValueVectorType &_vv)
    {
        assert(!kv && !vv); // can't sort two at once (if multithreading)
        assert(_kv.size() == _vv.size());
        kv = &_kv, vv = &_vv; // not an attempt of an atomic operation
    }

    static void EndSort()
    {
        kv = 0, vv = 0; // not an attempt of an atomic operation
    }
};

template <class KeyType, class ValueVectorType>
std::vector<MyKeyWrapper<KeyType, ValueVectorType> >
    *ValueVectorSingleton<KeyType, ValueVectorType>::kv = 0;
template <class KeyType, class ValueVectorType>
ValueVectorType *ValueVectorSingleton<KeyType, ValueVectorType>::vv = 0;

namespace std {

template <class KeyType, class ValueVectorType>
void swap(MyKeyWrapper<KeyType, ValueVectorType> &a,
    MyKeyWrapper<KeyType, ValueVectorType> &b)
{
    assert((ValueVectorSingleton<KeyType, ValueVectorType>::vv &&
        ValueVectorSingleton<KeyType, ValueVectorType>::kv)); // if this triggers, someone forgot to call StartSort()
    ValueVectorType &vv = *ValueVectorSingleton<KeyType, ValueVectorType>::vv;
    std::vector<MyKeyWrapper<KeyType, ValueVectorType> > &kv =
        *ValueVectorSingleton<KeyType, ValueVectorType>::kv;
    size_t ai = &kv.front() - &a, bi = &kv.front() - &b; // get indices in key vector
    std::swap(a, b); // swap keys
    std::swap(vv[ai], vv[bi]); // and any associated values
}

} // ~std

And sorting as:

std::vector<char> vv; // filled by values
std::vector<MyKeyWrapper<size_t, std::vector<char> > > kv; // filled by keys, casted to MyKeyWrapper

ValueVectorSingleton<size_t, std::vector<char> >::StartSort(kv, vv);
std::sort(kv.begin(), kv.end());
ValueVectorSingleton<size_t, std::vector<char> >::EndSort();
// trick std::sort into using the custom std::swap which also swaps the other vectors

This is obviously very appalling, trivial to abuse in horrible ways, but arguably much shorter than the pair of iterators and probably similar in performance. And it actually works.

Note that swap() could be implemented inside ValueVectorSingleton and the one injected in the std namespace would just call it. That would avoid having to make vv and kv public. Also, the addresses of a and b could further be checked to make sure they are inside kv and not some other vector. Also, this is limited to sorting by values of only one vector (can't sort by corresponding values in both vectors at the same time). And the template parameters could be simply KeyType and ValueType, this was written in a hurry.

Upvotes: 2

Related Questions