Reputation: 2391
I would like to append a columns to my data.frame in R that contain row sums and products Consider following data frame
x y z
1 2 3
2 3 4
5 1 2
I want to get the following
x y z sum prod
1 2 3 6 6
2 3 4 9 24
5 1 2 8 10
I have tried
sum = apply(ages,1,add)
but it gives me a row vector. Can some one please show me an efficient command to sum and product and append them to original data frame as shown above?
Upvotes: 15
Views: 50684
Reputation: 101383
With base R, you can use Reduce
like below
cbind(
df,
list2DF(
lapply(
c(sum = `+`, prod = `*`),
\(op) Reduce(op, df)
)
)
)
which gives
x y z sum prod
1 1 2 3 6 6
2 2 3 4 9 24
3 5 1 2 8 10
df <- data.frame(x = c(1, 2, 5), y = c(2, 3, 1), z = c(3, 4, 2))
Upvotes: 0
Reputation: 307
Here is a quick way to do it using base R.
# create your example data frame
df <- data.frame(x=c(1,2,5), y=c(2,3,1), z=c(3,4,1))
# add the sum column
df$sum <- apply(df, MARGIN = 1, sum)
# add the product column (don't include the sum column from the last operation)
df$prod <- apply(df[,-4], MARGIN = 1, prod)
# print result to console
df
x y z sum prod
1 1 2 3 6 6
2 2 3 4 9 24
3 5 1 1 7 5
Upvotes: 0
Reputation: 5456
Only a partial answer, but if all values are greater than or equal to 0, rowSums/rowsum can be used to calculate products:
df <- data.frame(x = c(1, 2, 5), y = c(2, 3, 1), z = c(3, 4, 2))
# custom row-product-function
my_rowprod <- function(x) exp(rowSums(log(x)))
df$prod <- my_rowprod(df)
df
The generic version is (including negatives):
my_rowprod_2 <- function(x) {
sign <- ifelse((rowSums(x < 0) %% 2) == 1, -1, 1)
prod <- exp(rowSums(log(abs(x)))) * sign
prod
}
df$prod <- my_rowprod_2(df)
df
Upvotes: 3
Reputation: 24545
Following can also be done but column names need to be entered:
ddf$sum = with(ddf, x+y+z)
ddf$prod = with(ddf, x*y*z)
ddf
x y z sum prod
1 1 2 3 6 6
2 2 3 4 9 24
3 5 1 2 8 10
With data.table, another form can be:
library(data.table)
cbind(dt, dt[,list(sum=x+y+z, product=x*y*z),])
x y z sum product
1: 1 2 3 6 6
2: 2 3 4 9 24
3: 5 1 2 8 10
A simpler version is suggested by @David Arenberg in comments:
dt[, ":="(sum = x+y+z, product = x*y*z)]
Upvotes: 4
Reputation: 5536
Another approach.
require(data.table)
# Create data
dt <- data.table(x = c(1,2,5), y = c(2,3,1), z = c(3,4,2))
# Create index
dt[, i := .I]
# Compute sum and prod
dt[, sum := sum(x, y, z), by = i]
dt[, prod := prod(x, y, z), by = i]
dt
# Compute sum and prod using .SD
dt[, c("sum", "prod") := NULL]
dt
dt[, sum := sum(.SD), by = i, .SDcols = c("x", "y", "z")]
dt[, prod := prod(.SD), by = i, .SDcols = c("x", "y", "z")]
dt
# Compute sum and prod using .SD and list
dt[, c("sum", "prod") := NULL]
dt
dt[, c("sum", "prod") := list(sum(.SD), prod(.SD)), by = i,
.SDcols = c("x", "y", "z")]
dt
# Compute sum and prod using .SD and lapply
dt[, c("sum", "prod") := NULL]
dt
dt[, c("sum", "prod") := lapply(list(sum, prod), do.call, .SD), by = i,
.SDcols = c("x", "y", "z")]
dt
Upvotes: 7
Reputation: 887128
Try
transform(df, sum=rowSums(df), prod=x*y*z)
# x y z sum prod
#1 1 2 3 6 6
#2 2 3 4 9 24
#3 5 1 2 8 10
Or
transform(df, sum=rowSums(df), prod=Reduce(`*`, df))
# x y z sum prod
#1 1 2 3 6 6
#2 2 3 4 9 24
#3 5 1 2 8 10
Another option would be to use rowProds
from matrixStats
library(matrixStats)
transform(df, sum=rowSums(df), prod=rowProds(as.matrix(df)))
If you are using apply
df[,c('sum', 'prod')] <- t(apply(df, 1, FUN=function(x) c(sum(x), prod(x))))
df
# x y z sum prod
#1 1 2 3 6 6
#2 2 3 4 9 24
#3 5 1 2 8 10
Upvotes: 26