Reputation: 5552
I have a dataframe and a dictionary, the keys of the dict are the same as the index value of the dataframe, like these:
A = pd.DataFrame([[1, 5, 2], [2, 4, 4], [3, 3, 1], [4, 2, 2], [5, 1, 4]],
columns=['A', 'B', 'C'], index=["1a", "2a", "3a", "4a", "5a"])
B = {'1a': 0.5, '2a': 0.75, '3a': 0.625, '4a': 0.55, '5a': 1}
How can I convert the values of the dictionary into values of a column in the dataframe, matching their respective key - index value. So the output would be like this:
A B C D
1a 1 5 2 0.5
2a 2 4 4 0.75
3a 3 3 1 0.625
4a 4 2 2 0.55
5a 5 1 4 1
The new column 'D' has all the values from the dictionary 'B' and each index value in the dataframe matches it correspondent key value in the dict.
Thanks
Upvotes: 4
Views: 450
Reputation: 77424
You can wrap the dict
with pandas.Series
and then simply create it as a column:
In [633]: A['D'] = pd.Series(B)
In [634]: A
Out[634]:
A B C D
1a 1 5 2 0.500
2a 2 4 4 0.750
3a 3 3 1 0.625
4a 4 2 2 0.550
5a 5 1 4 1.000
Upvotes: 4