Rain Lee
Rain Lee

Reputation: 531

Hadoop setJarByClass not working

My WordCount example is the following structure:

public class WordCount extends Configured implements Tool {

    public static class Map extends
            Mapper<LongWritable, Text, Text, IntWritable> {}

    public static class Reduce extends
            Reducer<Text, IntWritable, Text, IntWritable> {}

    public static void main(String[] args) throws Exception {
        BasicConfigurator.configure();
        Logger.getRootLogger().setLevel(Level.WARN);
        int res = ToolRunner.run(new Configuration(), new WordCount(), args);
        System.exit(res);
    }

    @Override
    public int run(String[] args) throws Exception {

        Configuration conf = new Configuration();
        FileSystem fs = FileSystem.get(conf);

        if (fs.exists(new Path(args[1]))) {
            fs.delete(new Path(args[1]), true);
        }

        Job job = Job.getInstance(conf, "wordcount");
        long startTime = System.currentTimeMillis();
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);

        job.setMapperClass(Map.class);
        job.setReducerClass(Reduce.class);

        job.setInputFormatClass(TextInputFormat.class);
        job.setOutputFormatClass(TextOutputFormat.class);

        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        job.setJarByClass(WordCount.class);
//      job.setJar(WordCount.class.getSimpleName());
        job.waitForCompletion(true);
        System.out.println("Job Finished in "
                + (System.currentTimeMillis() - startTime) / 1000.0
                + " seconds");
        return 0;
    }

}

The job.setJarByClass() call is not working, and I get a "No job jar file set" message. Also, job.getJar() after this call shows "null" value. Anyone knows what's the problem here?

I also tried with job.setJarByClass(this.getClass()), job.setJar("WordCount") and job.setJar(WordCount.class.getSimpleName()). The first one has no effect, job.getJar() returns null, the second and third both give me FileNotFoundException: File WordCount does not exist. Then I tried with job.setJar("src/wordcount/WordCount.java") and job.setJar("bin/wordcount/WordCount.class"), both succeed within eclipse (without this warning message), but still fail with FileNotFoundException when executed as standalone jar file on command line. I guess the problem may relate to class path setting if not unresolved dependencies.

Upvotes: 0

Views: 1850

Answers (2)

Ravi H
Ravi H

Reputation: 596

please use this java code for word counting, with two arguments one is input file other one is result file. And add all jar files from mapreduce and common folders in hadoop directory

    package org.samples.mapreduce.training;

import java.io.IOException;
import java.util.*;       
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;       
public class WordCount {
 public static class Map extends Mapper<LongWritable, Text, Text, IntWritable> {
    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();
    public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String line = value.toString();
        StringTokenizer tokenizer = new StringTokenizer(line);
        while (tokenizer.hasMoreTokens()) {
            word.set(tokenizer.nextToken());
            context.write(word, one);
        }
    }
 } 

 public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {

    public void reduce(Text key, Iterable<IntWritable> values, Context context) 
      throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable val : values) {
            sum += val.get();
        }
        context.write(key, new IntWritable(sum));
    }
 }

 public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
      conf.set("mapred.job.tracker", "hdfs://localhost:50001");
      conf.set("fs.default.name", "hdfs://localhost:50000");
        Job job = new Job(conf, "wordcount");

    job.setJarByClass(WordCount.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);

    job.setMapperClass(Map.class);
    job.setReducerClass(Reduce.class);

    job.setInputFormatClass(TextInputFormat.class);
    job.setOutputFormatClass(TextOutputFormat.class);

    FileInputFormat.addInputPath(job, new Path(args[0]));
    FileOutputFormat.setOutputPath(job, new Path(args[1]));

    job.waitForCompletion(true);
 }

}

Or If you want use advance version use this code with three arguments, here third one file which you dont want count example ,

package org.samples.mapreduce.training;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.net.URI;
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.Counter;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.StringUtils;

public class WordCountV2 {

  public static class TokenizerMapper
       extends Mapper<Object, Text, Text, IntWritable>{

    static enum CountersEnum { INPUT_WORDS }

    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    private boolean caseSensitive;
    private Set<String> patternsToSkip = new HashSet<String>();

    private Configuration conf;
    private BufferedReader fis;

    @Override
    public void setup(Context context) throws IOException,
        InterruptedException {
      conf = context.getConfiguration();
      caseSensitive = conf.getBoolean("wordcount.case.sensitive", true);
      if (conf.getBoolean("wordcount.skip.patterns", true)) {
        URI[] patternsURIs = Job.getInstance(conf).getCacheFiles();
        for (URI patternsURI : patternsURIs) {
          Path patternsPath = new Path(patternsURI.getPath());
          String patternsFileName = patternsPath.getName().toString();
          parseSkipFile(patternsFileName);
        }
      }
    }

    private void parseSkipFile(String fileName) {
      try {
        fis = new BufferedReader(new FileReader(fileName));
        String pattern = null;
        while ((pattern = fis.readLine()) != null) {
          patternsToSkip.add(pattern);
        }
      } catch (IOException ioe) {
        System.err.println("Caught exception while parsing the cached file '"
            + StringUtils.stringifyException(ioe));
      }
    }

    @Override
    public void map(Object key, Text value, Context context
                    ) throws IOException, InterruptedException {
      String line = (caseSensitive) ?
          value.toString() : value.toString().toLowerCase();
      for (String pattern : patternsToSkip) {
        line = line.replaceAll(pattern, "");
      }
      StringTokenizer itr = new StringTokenizer(line);
      while (itr.hasMoreTokens()) {
        word.set(itr.nextToken());
        context.write(word, one);
        Counter counter = context.getCounter(CountersEnum.class.getName(),
            CountersEnum.INPUT_WORDS.toString());
        counter.increment(1);
      }
    }
  }

  public static class IntSumReducer
       extends Reducer<Text,IntWritable,Text,IntWritable> {
    private IntWritable result = new IntWritable();

    public void reduce(Text key, Iterable<IntWritable> values,
                       Context context
                       ) throws IOException, InterruptedException {
      int sum = 0;
      for (IntWritable val : values) {
        sum += val.get();
      }
      result.set(sum);
      context.write(key, result);
    }
  }

  public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    GenericOptionsParser optionParser = new GenericOptionsParser(conf, args);
    String[] remainingArgs = optionParser.getRemainingArgs();
    if (!(remainingArgs.length != 2 || remainingArgs.length != 4)) {
      System.err.println("Usage: wordcount <in> <out> [-skip skipPatternFile]");
      System.exit(2);
    }
    Job job = Job.getInstance(conf, "word count");
    job.setJarByClass(WordCountV2.class);
    job.setMapperClass(TokenizerMapper.class);
    job.setCombinerClass(IntSumReducer.class);
    job.setReducerClass(IntSumReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);

    List<String> otherArgs = new ArrayList<String>();
    for (int i=0; i < remainingArgs.length; ++i) {
      if ("-skip".equals(remainingArgs[i])) {
        job.addCacheFile(new Path(remainingArgs[++i]).toUri());
        job.getConfiguration().setBoolean("wordcount.skip.patterns", true);
      } else {
        otherArgs.add(remainingArgs[i]);
      }
    }
    FileInputFormat.addInputPath(job, new Path(otherArgs.get(0)));
    FileOutputFormat.setOutputPath(job, new Path(otherArgs.get(1)));

    System.exit(job.waitForCompletion(true) ? 0 : 1);
  }
}

Upvotes: 0

Ravi H
Ravi H

Reputation: 596

think you should add appropriate jar files.

In your case you must have this jar org.apache.hadoop.mapreduce.Job in your project file.

I imported the following classes and interfaces

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Mapper.Context;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.apache.log4j.BasicConfigurator;
import org.apache.log4j.Level;
import org.apache.log4j.Logger;

And your project working fine. Just check after importing all above mentioned classes. If any problem, give me a comment.

Upvotes: 1

Related Questions