Reputation: 13
How do i implement this kind of equation in python dC/dt = r + kI - dC where the left hand side are constants and the right hand side are varibles?
i am relatively new to python and as such can't really do much.
from sympy.solvers import ode
r=float(input("enter r:"))
k=float(input("enter k:"))
I=float(input("enter I:"))
d=float(input("enter d:"))
C=float(input("enter C:"))
dC/dt=x
x=r + kI-dC
print(x)
what it just does equate the values of x and not any differential, would like help getting this to work.
if possible i would like to get answer specifying the using of sympy, but all answers are truly appreciated.
Upvotes: 1
Views: 532
Reputation: 19047
You asigned values to all the variables that are on the rhs of x so when you show x you see the value that it took on with the variables that you defined. Rather than input values, why not try solve the ode symbolically if possible?
>>> from sympy import *
>>> var('r k I d C t')
(r, k, I, d, C, t)
>>> eq = Eq(C(t).diff(t), r + k*I + d*C(t)) # note d*C(t) not d*C
>>> ans = dsolve(eq); ans
C(t) == (-I*k - r + exp(d*(C1 + t)))/d
Now you can substitute in values for the variables to see the result:
>>> ans.subs({k: 0})
C(t) == (-r + exp(d*(C1 + t)))/d
Upvotes: 1