Reputation: 35
so was trying a linear regression with scipy.odr. However, it failed miserably. scipy.odr has worked for me before, and I don't see any errors in my code. The only reason I can think of is that the slope may be too small but I don't see how that could bother scipy. Thank you for your help.
The Code:
#!/usr/bin/env python3 -i
# -*- coding: iso-8859-1 -*-
import matplotlib.pyplot as plt
import numpy as np
from scipy.odr import *
fig = plt.figure()
ax1 = fig.add_subplot(111)
x = np.linspace(0,1E15,10)
y = 1E-15*x-2
ax1.set_xlim(-0.05E15,1.1E15)
ax1.set_ylim(-2.1, -0.7)
ax1.plot(x, y, 'o')
# Fit using odr
def f(B, x):
return B[0]*x + B[1]
linear = Model(f)
mydata = RealData(x, y)
myodr = ODR(mydata, linear, beta0=[1., 2.])
myoutput = myodr.run()
myoutput.pprint()
a, b = myoutput.beta
sa, sb = myoutput.sd_beta
xp = np.linspace(ax1.get_xlim()[0], ax1.get_xlim()[1], 1000)
yp = a*xp+b
ax1.plot(xp,yp)
plt.show()
This is the resulting terminal output:
Beta: [ -4.84615388e-15 2.00000000e+00]
Beta Std Error: [ 8.14077323e-16 0.00000000e+00]
Beta Covariance: [[ 1.46153845e-31 0.00000000e+00]
[ 0.00000000e+00 0.00000000e+00]]
Residual Variance: 4.534412955465587
Inverse Condition #: 1.0
Reason(s) for Halting:
Problem is not full rank at solution
Parameter convergence
And this the resulting graphic:
edit: My code for the odr-regression comes from http://docs.scipy.org/doc/scipy/reference/odr.html
Upvotes: 0
Views: 3126
Reputation: 2365
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure()
ax1 = fig.add_subplot(111)
x = np.linspace(0,1E15,10)
y = 1E-15*x-2
ax1.set_xlim(-0.05E15,1.1E15)
ax1.set_ylim(-2.1, -0.7)
ax1.plot(x, y, 'o')
# Fit using odr
def f(B, x):
return B[0]*x + B[1]
sx = np.std(x)
sy = np.std(y)
linear = Model(f)
mydata = RealData(x=x,y=y, sx=sx, sy=sy)
myodr = ODR(mydata, linear, beta0=[1.00000000e-15, 2.])
myoutput = myodr.run()
myoutput.pprint()
a, b = myoutput.beta
sa, sb = myoutput.sd_beta
xp = np.linspace(min(x), max(x), 1000)
yp = a*xp+b
ax1.plot(xp,yp)
plt.show()
Upvotes: 1