Reputation: 63
Assuming I'm having a vectors of numbers A, for example: A=[1 3 5 3 9 6]
(A's length >= 2) and an Integer X=6
. Need to find how many pairs (A[i],A[j])
where i<j
exist in the vector which answer this condition: A[i]+A[j]=X
. The number of pairs is printed.
Not allowed to use for
/while
. Allowed only ceil
,floor
,mod
,repmat
,reshape
,size
,length
,transpose
,sort
,isempty
,all
,any
,find
,sum
,max
,min
.
Upvotes: 0
Views: 261
Reputation: 221524
With repmat
, length
and sum
-
integer1 = 6; %// One of the paramters
A_ind = 1:length(A) %// Get the indices array
%// Expand A_ind into rows and A_ind' into columns, to form a meshgrid structure
A_ind_mat1 = repmat(A_ind,[length(A) 1])
A_ind_mat2 = repmat(A_ind',[1 length(A)]) %//'
%// Expand A into rows and A' into columns, to form a meshgrid structure
A_mat1 = repmat(A,[length(A) 1])
A_mat2 = repmat(A',[1 length(A)]) %//'
%// Form the binary matrix of -> (A[i],A[j]) where i<j
cond1 = A_ind_mat1 < A_ind_mat2
%// Use the binary matrix as a logical mask to select elements from the two
%// matrices and see which element pairs satisfy -> A[i]+A[j]=X and get a
%// count of those pairs with SUM
pairs_count = sum((A_mat1(cond1) + A_mat2(cond1))==integer1)
Outputs from code run to make it clearer -
A =
1 3 5 3 9 6
A_ind =
1 2 3 4 5 6
A_ind_mat1 =
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6
A_ind_mat2 =
1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 3 3 3
4 4 4 4 4 4
5 5 5 5 5 5
6 6 6 6 6 6
A_mat1 =
1 3 5 3 9 6
1 3 5 3 9 6
1 3 5 3 9 6
1 3 5 3 9 6
1 3 5 3 9 6
1 3 5 3 9 6
A_mat2 =
1 1 1 1 1 1
3 3 3 3 3 3
5 5 5 5 5 5
3 3 3 3 3 3
9 9 9 9 9 9
6 6 6 6 6 6
cond1 =
0 0 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
pairs_count =
2
A bit more explanation -
Taking few more steps to clarify why pairs_count
must be 2
here -
Set all values in A_mat1
and A_mat2
to be zeros that do not satisfy the less than
criteria
>> A_mat1(~cond1)=0
A_mat1 =
0 0 0 0 0 0
1 0 0 0 0 0
1 3 0 0 0 0
1 3 5 0 0 0
1 3 5 3 0 0
1 3 5 3 9 0
>> A_mat2(~cond1)=0
A_mat2 =
0 0 0 0 0 0
3 0 0 0 0 0
5 5 0 0 0 0
3 3 3 0 0 0
9 9 9 9 0 0
6 6 6 6 6 0
Now, add A_mat1
and A_mat2
and see how many 6
's you got -
>> A_mat1 + A_mat2
ans =
0 0 0 0 0 0
4 0 0 0 0 0
6 8 0 0 0 0
4 6 8 0 0 0
10 12 14 12 0 0
7 9 11 9 15 0
As you can see there are two 6
's and thus our result is verified.
Upvotes: 4