Reputation: 167
I have a data frame d
, it has 3 columns, that are s
, n
, id
and I need to calculate correlation between "s" and "n" based on their "id". Like for eg data frame:
"s" "n" "id"
1.6 0.5 2
2.5 0.8 2
4.8 0.7 3
2.6 0.4 3
3.5 0.66 3
1.2 0.1 4
2.5 0.45 4
So, I want to calcualte correlation of 2's, 3's and 4's and return it as a vector like:
cor
0.18 0.45 0.65
My problem is how to choose these id's and calculate correlation and return in the form of a vector.
Thank you
Upvotes: 4
Views: 3777
Reputation: 4921
A looping option (even though it is probably slower than other solutions). In case you wanted to include only certain identities you should adapt vector d, correlations are returned in vector v
d <- unique(mydf$id)
v <- vector("numeric", length = length(d))
for(i in seq_along(d)) {
dat <- mydf[ which(mydf$id == d[i]), ]
v[i] <- cor(dat$s, dat$n)
}
Upvotes: 0
Reputation: 70266
Here's a dplyr approach:
library(dplyr)
group_by(df, id) %>% summarise(corel = cor(s, n)) %>% .$corel
#[1] 1.000000 0.875128 1.000000
Upvotes: 3
Reputation: 887118
May be you can try
unname(c(by(df[,-3], list(df$id), FUN=function(x) cor(x)[2])))
#[1] 1.000000 0.875128 1.000000
Or
unname(sapply(by(df[,-3], list(df$id), FUN=cor),`[`,2))
#[1] 1.000000 0.875128 1.000000
Or
library(data.table)
setDT(df)[,cor(s,n) , by=id]$V1
#[1] 1.000000 0.875128 1.000000
df <- structure(list(s = c(1.6, 2.5, 4.8, 2.6, 3.5, 1.2, 2.5), n = c(0.5,
0.8, 0.7, 0.4, 0.66, 0.1, 0.45), id = c(2L, 2L, 3L, 3L, 3L, 4L,
4L)), .Names = c("s", "n", "id"), class = "data.frame", row.names = c(NA,
-7L))
Upvotes: 2
Reputation: 24074
tab_split<-split(mydf,mydf$id) # get a list where each element is a subset of your data.frame with the same id
unlist(lapply(tab_split,function(tab) cor(tab[,1],tab[,2]))) # get a vector of correlation coefficients
with the sample you gave :
mydf<-structure(list(s = c(1.6, 2.5, 4.8, 2.6, 3.5, 1.2, 2.5),
n = c(0.5,0.8, 0.7, 0.4, 0.66, 0.1, 0.45),
id = c(2L, 2L, 3L, 3L, 3L, 4L,4L)),
.Names = c("s", "n", "id"),
class = "data.frame",
row.names = c(NA, -7L))
> unlist(lapply(tab_split,function(tab) cor(tab[,1],tab[,2])))
2 3 4
1.000000 0.875128 1.000000
NB: if your column names are always "n" and "s", you can also do
unlist(lapply(tab_split,function(tab) cor(tab$s,tab$n)))
Upvotes: 2