Reputation: 1094
Let's suppose I have following Time Series:
Timestamp Category
2014-10-16 15:05:17 Facebook
2014-10-16 14:56:37 Vimeo
2014-10-16 14:25:16 Facebook
2014-10-16 14:15:32 Facebook
2014-10-16 13:41:01 Facebook
2014-10-16 12:50:30 Orkut
2014-10-16 12:28:54 Facebook
2014-10-16 12:26:56 Facebook
2014-10-16 12:25:12 Facebook
...
2014-10-08 15:52:49 Youtube
2014-10-08 15:04:50 Youtube
2014-10-08 15:03:48 Vimeo
2014-10-08 15:02:27 Youtube
2014-10-08 15:01:56 DailyMotion
2014-10-08 13:27:28 Facebook
2014-10-08 13:01:08 Vimeo
2014-10-08 12:52:06 Facebook
2014-10-08 12:43:27 Facebook
Name: summary, Length: 600
I would like to make a count of each category (Unique Value/Factor in the Time Series) per week and year.
Example:
Week/Year Category Count
1/2014 Facebook 12
1/2014 Google 5
1/2014 Youtube 2
...
2/2014 Facebook 2
2/2014 Google 5
2/2014 Youtube 20
...
How can this be achieved using Python pandas?
Upvotes: 38
Views: 55079
Reputation: 176740
It might be easiest to turn your Series into a DataFrame and use Pandas' groupby
functionality (if you already have a DataFrame then skip straight to adding another column below).
If your Series is called s
, then turn it into a DataFrame like so:
>>> df = pd.DataFrame({'Timestamp': s.index, 'Category': s.values})
>>> df
Category Timestamp
0 Facebook 2014-10-16 15:05:17
1 Vimeo 2014-10-16 14:56:37
2 Facebook 2014-10-16 14:25:16
...
Now add another column for the week and year (one way is to use apply
and generate a string of the week/year numbers):
>>> df['Week/Year'] = df['Timestamp'].apply(lambda x: "%d/%d" % (x.week, x.year))
>>> df
Timestamp Category Week/Year
0 2014-10-16 15:05:17 Facebook 42/2014
1 2014-10-16 14:56:37 Vimeo 42/2014
2 2014-10-16 14:25:16 Facebook 42/2014
...
Finally, group by 'Week/Year'
and 'Category'
and aggregate with size()
to get the counts. For the data in your question this produces the following:
>>> df.groupby(['Week/Year', 'Category']).size()
Week/Year Category
41/2014 DailyMotion 1
Facebook 3
Vimeo 2
Youtube 3
42/2014 Facebook 7
Orkut 1
Vimeo 1
Upvotes: 41
Reputation: 51
To be a little bit more clear, you do not need to create a new column called 'week_num' first.
df.groupby(by=lambda x: "%d/%d" % (x.week(), x.year())).Category.value_counts()
The function by will automatically call on each timestamp object of the index to convert them to week and year, and then group by the week and year.
Upvotes: 5
Reputation: 6703
Convert your TimeStamp column to week number then groupby that week number and value_count
the categorical variable like so:
df.groupby('week_num').Category.value_counts()
Where I have assumed that a new column week_num
was created from the TimeStamp column.
Upvotes: 6