Reputation:
My apologies for this simple question. Basically, I want to make three separate cumsum() tables and merge them together by the first table. For example:
a <- cumsum(table(df$variable))
b <- cumsum(table(df$variable[c(TRUE, FALSE)]))
c <- cumsum(table(df$variable[c(FALSE, TRUE)]))
Where a is the cumsum of the entire vector of df$variable, b is the cumsum of the odd-numbered values of df$variable, c is the cumsum of the even-numbered values of df$variable. Another way of interpreting this is that combining b and c produces a.
This is the entire vector of numbers.
[1] 18 17 15 10 5 0 10 10 0 10 15 5 5 5 25 15 13 0 0 0 25 18 15 15 1 4 5
[28] 5 5 15 5 12 15 0 3 12 20 0 5 5 13 10 10 10 3 15 13 20 12 60 10 10 2 0
[55] 5 10 8 4 0 15 5 5 15 5 0 5 2 8 5 5 5 5 9 9 3 7 20 25 5 4 10
[82] 10 2 4 5 5 18 8 0 10 5 5 7 12 5 13 26 20 13 21 5 15 10 10 5 15 5 15
[109] 0 1 13 21 25 25 5 14 5 15 10 0 5 15 3 4 5 15 15 5 25 25 5 15 0 2 13
[136] 22 2 10 3 3 15 11 0 2 40 35 24 24 5 5 10 5 16 0 17 19 20 5 5 5 0 15
[163] 3 13 20 4 5 5 3 19 25 25 0 15 5 3 22 22 25 5 15 15 5 15 17 9 5 5 15
[190] 10
For a, I used cbind(cumsum(table(df$variable)))
0 18
1 20
2 26
3 35
4 41
5 88
7 90
8 93
9 96
10 115
11 116
12 120
13 128
14 129
15 154
16 155
17 158
18 161
19 163
20 169
21 171
22 174
24 176
25 186
26 187
35 188
40 189
60 190
For b, I used cbind(cumsum(table(df$variable[c(TRUE, FALSE)])))
0 10
1 11
2 15
3 22
5 50
7 51
8 52
9 53
10 60
12 61
13 67
15 76
16 77
17 79
18 81
20 85
22 86
24 87
25 93
26 94
40 95
For c, I used cbind(cumsum(table(df$variable[c(FALSE, TRUE)])))
0 8
1 9
2 11
3 13
4 19
5 38
7 39
8 41
9 43
10 55
11 56
12 59
13 61
14 62
15 78
17 79
18 80
19 82
20 84
21 86
22 88
24 89
25 93
35 94
60 95
In frequency form, the distributions should look something like this.
a b c
0 18 10 8
1 2 1 1
2 6 4 2
3 9 7 2
4 6 0 6
5 47 28 19
7 2 1 1
8 3 1 2
9 3 1 2
10 19 7 12
11 1 0 1
12 4 1 3
13 8 6 2
14 1 0 1
15 25 9 16
16 1 1 0
17 3 2 1
18 3 2 1
19 2 0 2
20 6 4 2
21 2 0 2
22 3 1 2
24 2 1 1
25 10 6 4
26 1 1 0
35 1 0 1
40 1 1 0
60 1 0 1
190 95 95
But I want it in cumsum() form, such that it should look something like this. I wrote out the first 6 rows as illustration.
a b c
0 18 10 8
1 20 11 9
2 26 15 11
3 35 22 13
4 41 22 19
5 88 50 38
7 90 51 39
The problem I've been having is that the subsets a and b doesn't have all the values (i.e. some values have 0 frequency), such that it shortens the length of the vector; as a result, I'm unable to properly merge or cbind() these values.
Any suggestion is greatly appreciated.
Upvotes: 0
Views: 103
Reputation: 93813
You could probably get there using match
quite easily. Assuming your data is:
set.seed(1)
df <- data.frame(variable=rbinom(10,prob=0.5,size=3))
Something like this seems to work
out <- data.frame(a,b=b[match(names(a),names(b))],c=c[match(names(a),names(c))])
replace(out,is.na(out),0)
# a b c
#0 1 0 1
#1 4 2 2
#2 7 4 3
#3 10 5 5
Upvotes: 1