Reputation: 157
> df1 <- data.frame(A = 1:10, B= 11:20)
> df2 <- data.frame(A = 21:30, B = 31:40)
> ddata <- list(df1,df2)
My objective is to perform correlation of A column and B column per data frame of the list. i.e.
cor (ddata[[1]]$A,ddata[[1]]$B)
cor (ddata[[2]]$A,ddata[[2]]$B)
for this I am using lapply
but I am doing something incorrect, please help.
lapply(ddata, cor)
Upvotes: 3
Views: 1297
Reputation: 18612
The issue with your code is that when you call cor
on a whole data.frame
(of all numeric columns), it will return a correlation matrix, containing the pairwise correlations of all columns - with the values on the diagonals being the respective column's correlation with itself (which is always equal to 1.00). This wouldn't be immediately apparent with your sample data, since cor(A,B) == cor(B,A) == cor(A,A) == cor(B,B) == 1
for your two data.frame
s. This is clearer in the following example:
df5 <- data.frame(A=rnorm(10),B=rnorm(10),C=rnorm(10))
R> cor(df5)
A B C
A 1.00000000 0.05131293 0.6173047
B 0.05131293 1.00000000 -0.1312331
C 0.61730466 -0.13123314 1.0000000
Regardless, I think you were looking for a single correlation value rather than a correlation matrix, which can be achieved a couple of different ways - accessing the data.frame
's columns using either x[,1]
& x[,2]
or using x[[1]]
& x[[2]]
.
Additionally, there is another syntax option; one which results in a scalar value for correlation, except unlike the two cases above, it preserves the matrix
class. This is accessing the columns using x[1]
& x[2]
, since the single brackets (with no comma) will yield a one column data.frame
.
For your purposes, any of the 3 methods noted directly above should be acceptable - as long as you pass cor
two objects, whether they are (atomic) numeric vectors (case [, ]
and case [[ ]]
) or single column data.frame
s (case [ ]
) - the function will evaluate as cor(x, y, ...)
and return a single correlation value. The (subtle) difference between the first two methods and the third method is the class of the return value - numeric
(atomic) for the former, and matrix
for the latter - but this is most likely an inconsequential detail in the big picture.
Let me summarize this with a couple of examples, using this data:
set.seed(123)
df3 <- data.frame(
A=rnorm(10),
B=rnorm(10))
##
set.seed(321)
df4 <- data.frame(
A=rnorm(10),
B=rnorm(10))
##
dflist <- list(df3,df4)
A. Result type is a correlation matrix; result class is matrix
:
R> class(cor(df3)); cor(df3)
[1] "matrix"
A B
A 1.0000000 0.5776151
B 0.5776151 1.0000000
B. Result type is a single correlation value; result class is matrix
:
R> class(cor(df3[1],df3[2])); cor(df3[1],df3[2])
[1] "matrix"
B
A 0.5776151
C. Result type is a single correlation value; result class is numeric
:
R> class(cor(df3[,1],df3[,2])); cor(df3[,1],df3[,2])
[1] "numeric"
[1] 0.5776151
D. Result type is a single correlation value; result class is numeric
:
R> class(cor(df3[[1]],df3[[2]])); cor(df3[[1]],df3[[2]])
[1] "numeric"
[1] 0.5776151
Similarly, the following four functions fA
- fD
correspond to the cases A
- D
described above:
fA <- function(y) {
res <- lapply(y,cor)
message(paste0("Element class: ",class(res[[1]])))
res
}
##
fB <- function(y) {
res <- lapply(y, function(x) {
cor(x[1],x[2])
})
message(paste0("Element class: ",class(res[[1]])))
res
}
##
fC <- function(y) {
res <- lapply(y, function(x) {
cor(x[,1],x[,2])
})
message(paste0("Element class: ",class(res[[1]])))
res
}
##
fD <- function(y) {
res <- lapply(y, function(x) {
cor(x[[1]],x[[2]])
})
message(paste0("Element class: ",class(res[[1]])))
res
}
And running them on the object dflist
gives us
R> fA(dflist)
Element class: matrix
[[1]]
A B
A 1.0000000 0.5776151
B 0.5776151 1.0000000
[[2]]
A B
A 1.0000000 -0.1816951
B -0.1816951 1.0000000
##
R> fB(dflist)
Element class: matrix
[[1]]
B
A 0.5776151
[[2]]
B
A -0.1816951
##
R> fC(dflist)
Element class: numeric
[[1]]
[1] 0.5776151
[[2]]
[1] -0.1816951
##
R> fD(dflist)
Element class: numeric
[[1]]
[1] 0.5776151
[[2]]
[1] -0.1816951
Upvotes: 3