Reputation: 245
In my application when taking perfromance numbers, groupby is eating away lot of time.
My RDD is of below strcuture:
JavaPairRDD<CustomTuple, Map<String, Double>>
CustomTuple: This object contains information about the current row in RDD like which week, month, city, etc.
public class CustomTuple implements Serializable{
private Map hierarchyMap = null;
private Map granularMap = null;
private String timePeriod = null;
private String sourceKey = null;
}
Map
This map contains the statistical data about that row like how much investment, how many GRPs, etc.
<"Inv", 20>
<"GRP", 30>
I was executing below DAG on this RDD
So if user wants to view investment across time periods then below List is returned (this was achieved in step 4 above):
<timeperiod1, value>
When I checked time taken in operations, GroupBy was taking 90% of the time taken in executing the whole DAG.
IMO, we can replace GroupBy and subsequent Map operations by a sing reduce. But reduce will work on object of type JavaPairRDD>. So my reduce will be like T reduce(T,T,T) where T will be CustomTuple, Map.
Or maybe after step 3 in above DAG I run another map function that returns me an RDD of type for the metric that needs to be aggregated and then run a reduce.
Also, I am not sure how aggregate function works and will it be able to help me in this case.
Secondly, my application will receive request on varying keys. In my current RDD design each request would require me to repartition or re-group my RDD on this key. This means for each request grouping/re-partitioning would take 95% of my time to compute the job.
<"market1", 20>
<"market2", 30>
This is very discouraging as the current performance of application without Spark is 10 times better than performance with Spark.
Any insight is appreciated.
[EDIT]We also noticed that JOIN was taking a lot of time. Maybe thats why groupby was taking time.[EDIT]
TIA!
Upvotes: 1
Views: 8338
Reputation: 9405
Shuffling is triggered by any change in the key of a [K,V] pair, or by a repartition()
call. The partitioning is calculated based on the K (key) value. By default partitioning is calculated using the Hash value of your key, implemented by the hashCode()
method. In your case your Key contains two Map
instance variables. The default implementation of the hashCode()
method will have to calculate the hashCode()
of those maps as well, causing an iteration to happen over all it elements to in turn again calculate the hashCode()
of those elements.
The solutions are:
Map
instances in your Key. This seems highly unusual.hashCode()
that avoids going through the Map
Instance variables.Map
objects completely. If it is something that is shared amongst multiple elements, you might need to consider using broadcast variables in spark. The overhead of serializing your Maps during shuffling might also be a big contributing factor.Good reading on hashCode()
, including a reference to quotes by Josh Bloch can be found in wiki.
Upvotes: 0
Reputation: 930
The Spark's documentation encourages you to avoid operations groupBy operations instead they suggest combineByKey or some of its derivated operation (reduceByKey or aggregateByKey). You have to use this operation in order to make an aggregation before and after the shuffle (in the Map's and in the Reduce's phase if we use Hadoop terminology) so your execution times will improve (i don't kwown if it will be 10 times better but it has to be better)
If i understand your processing i think that you can use a single combineByKey operation The following code's explanation is made for a scala code but you can translate to Java code without too many effort.
combineByKey have three arguments: combineByKey[C](createCombiner: (V) ⇒ C, mergeValue: (C, V) ⇒ C, mergeCombiners: (C, C) ⇒ C): RDD[(K, C)]
createCombiner: In this operation you create a new class in order to combine your data so you could aggregate your CustomTuple data into a new Class CustomTupleCombiner (i don't know if you want only make a sum or maybe you want to apply some process to this data but either option can be made in this operation)
mergeValue: In this operation you have to describe how a CustomTuple is sum to another CustumTupleCombiner(again i am presupposing a simple summarize operation). For example if you want sum the data by key, you will have in your CustumTupleCombiner class a Map so the operation should be something like: CustumTupleCombiner.sum(CustomTuple) that make CustumTupleCombiner.Map(CustomTuple.key)-> CustomTuple.Map(CustomTuple.key) + CustumTupleCombiner.value
mergeCombiners: In this operation you have to define how merge two Combiner class, CustumTupleCombiner in my example. So this will be something like CustumTupleCombiner1.merge(CustumTupleCombiner2) that will be something like CustumTupleCombiner1.Map.keys.foreach( k -> CustumTupleCombiner1.Map(k)+CustumTupleCombiner2.Map(k)) or something like that
The pated code is not proved (this will not even compile because i made it with vim) but i think that might work for your scenario.
I hope this will be usefull
Upvotes: 6