Reputation: 477
A pairwise scatterplot showing relationship between genes (columns in data frame) across multiple samples (rows in data frame) is created. The samples belong to two distinct groups: group "A" and "B". Since one dot in plot represent one sample, I need to color the data points (dots) according to groups with two different colors, say group A with "green" and group B with "red". Is it possible to do that?
Any kind of help will be appreciated.
plot(DF[1:6], pch = 21) #command used for plotting, DF is data frame
Sample Data Frame Example:
CBX3 PSPH ATP2C1 SNX10 MMD ATP13A3
B 10.589844 6.842970 8.084550 8.475023 9.202490 10.403811
A 10.174385 5.517944 7.736994 9.094834 9.253766 10.133408
B 10.202084 5.669137 7.392141 7.522270 7.830969 9.123178
B 10.893231 6.630709 7.601690 7.894177 8.979142 9.791841
B 10.071038 5.091222 7.032585 8.305581 7.903737 8.994821
A 10.005002 4.708631 7.927246 7.292527 8.257853 10.054630
B 10.028055 5.080944 6.421961 7.616856 8.287496 9.642294
A 10.144115 6.626483 7.686203 7.970934 7.919615 9.475175
A 10.675386 6.874047 7.900560 7.605519 8.585158 8.858613
A 9.855063 5.164399 6.847923 8.072608 8.221344 9.077744
A 10.994228 6.545318 8.606128 8.426329 8.787876 9.857079
A 10.501266 6.677360 7.787168 8.444976 8.928174 9.542558
Upvotes: 0
Views: 268
Reputation: 413
GGally has a good function for this as well.
library(GGally)
ggpairs(dd, color = 'CLASS',columns = 2:ncol(dd) )
Upvotes: 2
Reputation: 10167
You can add color to the points by specifying the argument col
to plot
DF <- read.delim(textConnection(
"category CBX3 PSPH ATP2C1 SNX10 MMD ATP13A3
B 10.589844 6.842970 8.084550 8.475023 9.202490 10.403811
A 10.174385 5.517944 7.736994 9.094834 9.253766 10.133408
B 10.202084 5.669137 7.392141 7.522270 7.830969 9.123178
B 10.893231 6.630709 7.601690 7.894177 8.979142 9.791841
B 10.071038 5.091222 7.032585 8.305581 7.903737 8.994821
A 10.005002 4.708631 7.927246 7.292527 8.257853 10.054630
B 10.028055 5.080944 6.421961 7.616856 8.287496 9.642294
A 10.144115 6.626483 7.686203 7.970934 7.919615 9.475175
A 10.675386 6.874047 7.900560 7.605519 8.585158 8.858613
A 9.855063 5.164399 6.847923 8.072608 8.221344 9.077744
A 10.994228 6.545318 8.606128 8.426329 8.787876 9.857079
A 10.501266 6.677360 7.787168 8.444976 8.928174 9.542558"))
plot(DF[2:7],col = ifelse(DF$category == 'A','red','green'))
A list of valid color values can be obtained by calling colors()
. Vectors with a gradient of colors can be created via rainbow()
, and just for fun, I use this little function for choosing pretty colors when making a figure.
(Edited per suggestions from @MrFlick)
#! @param n The number of colors to be selected
colorchoose <- function (n = 1, alpha, term = F)
{
cols <- colors()
mod <- ceiling(sqrt(length(cols)))
plot(xlab = "", ylab = "", main = "click for color name",
c(0, mod), c(0, mod), type = "n", axes = F)
s<-seq_along(cols)
dev.hold()
points(s%%mod, s%/%mod, col = cols, pch = 15, cex = 2.4)
dev.flush()
p <- locator(n)
return(cols[round(p$y) * mod + round(p$x)])
}
Upvotes: 1
Reputation: 206197
It might not be that easy to do with base graphics. You could easily do this with lattice. With this sample data.frame
dd<-structure(list(CLASS = structure(c(2L, 1L, 2L, 2L, 2L, 1L, 2L,
1L, 1L, 1L, 1L, 1L), .Label = c("A", "B"), class = "factor"),
CBX3 = c(10.589844, 10.174385, 10.202084, 10.893231, 10.071038,
10.005002, 10.028055, 10.144115, 10.675386, 9.855063, 10.994228,
10.501266), PSPH = c(6.84297, 5.517944, 5.669137, 6.630709,
5.091222, 4.708631, 5.080944, 6.626483, 6.874047, 5.164399,
6.545318, 6.67736), ATP2C1 = c(8.08455, 7.736994, 7.392141,
7.60169, 7.032585, 7.927246, 6.421961, 7.686203, 7.90056,
6.847923, 8.606128, 7.787168), SNX10 = c(8.475023, 9.094834,
7.52227, 7.894177, 8.305581, 7.292527, 7.616856, 7.970934,
7.605519, 8.072608, 8.426329, 8.444976), MMD = c(9.20249,
9.253766, 7.830969, 8.979142, 7.903737, 8.257853, 8.287496,
7.919615, 8.585158, 8.221344, 8.787876, 8.928174), ATP13A3 = c(10.403811,
10.133408, 9.123178, 9.791841, 8.994821, 10.05463, 9.642294,
9.475175, 8.858613, 9.077744, 9.857079, 9.542558)), .Names = c("CLASS",
"CBX3", "PSPH", "ATP2C1", "SNX10", "MMD", "ATP13A3"), class = "data.frame", row.names = c(NA, -12L))
you can do
library(lattice)
splom(~dd[,-1], groups=dd$CLASS)
to get
Upvotes: 1