Reputation: 113
there are 3 columns in the original data frame: id, type and rank. Now I want to create a new data frame having each possible value of type as a single column (see the small example below, the original data contains >100.000 rows and 30 types)
data1
id type rank
x a 1
y a 2
z a 3
x b 1
z b 2
y c 1
data2
id a b c
x 1 1 NA
y 2 NA 1
z 3 2 NA
That's what I have done so far:
for (i in (1:nrow(data1))) {
dtype <- data[i,2]
if (any(data2$id == data1[i,1], na.rm = TRUE)) {
row <- grep(data1[i,1],data2$id)
data2[row,c(dtype)] <- data1[i,3]
} else {
data2[nrow(data2)+1,1] <- as.character(data1[i,1])
data2[nrow(data2),c(dtype)] <- data1[i,3]
}
}
This works (I hope this example explains what I am doing), but it is quite slow. Do you have any hints how I can optimize this algorithm?
Upvotes: 0
Views: 1043
Reputation: 3488
Here's an example from the tidyr
package.
library("tidyr")
library("dplyr")
data2<-
data1 %>% spread(type, rank)
id a b c
1 x 1 1 NA
2 y 2 NA 1
3 z 3 2 NA
Upvotes: 4
Reputation: 118809
Here's using data.table
:
require(data.table)
ans = dcast.data.table(setDT(data1), id ~ type)
ans
# id a b c
# 1: x 1 1 NA
# 2: y 2 NA 1
# 3: z 3 2 NA
Upvotes: 3
Reputation: 193547
Using the function by the word mentioned in your question, you can just use reshape
from base R:
> reshape(mydf, direction = "wide", idvar = "id", timevar = "type")
id rank.a rank.b rank.c
1 x 1 1 NA
2 y 2 NA 1
3 z 3 2 NA
Upvotes: 4