odocoileus
odocoileus

Reputation: 53

bridging together lapply function with multiple csv files

I have multiple files that I want to use the same scripting on. I'm struggling with how exactly to "link" together the lapply function with the scripts I want to use.

It's an extension of applying R script prepared for single file to multiple files in the directory

filenames<-list.files("NEWELKYR",pattern="*.csv",full.names=T)

mycsv=dir(pattern=".csv")
n<-length(mycsv)
mylist<-vector("list",n)
for(i in 1:n) mylist[[1]] <- read.csv(mycsv[i])

mylist<-lapply(mylist,function(x) #what do I put here?#

GROUP[1] <- 1
Xdist[1] <- XLOC[2] - XLOC[1]
Ydist[1] <- YLOC[2] - YLOC[1]
NSD[1]   <- as.integer(sqrt(Xdist[1]^2+Ydist[1]^2))
for ( j in 2:(nrow()-1)) {
  if ( NSD[j-1] > 1700) {
    Xdist[j] <- XLOC[j+1] - XLOC[j]
    Ydist[j] <- YLOC[j+1] - YLOC[j]
    NSD[j]   <- as.integer(sqrt(Xdist[j]^2+Ydist[j]^2))
    GROUP[j] <- (GROUP[j-1] + 1)
  } else {
    Xdist[j] <- XLOC[j+1] - XLOC[j] + Xdist[j-1]
    Ydist[j] <- YLOC[j+1] - YLOC[j] + Ydist[j-1]
    NSD[j]   <- as.integer(sqrt(Xdist[j]^2+Ydist[j]^2))
    GROUP[j] <- (GROUP[j-1])    
  }}
)


for(i in 1:n)
  write.csv(file=paste("file",i,".csv",sep="")),
  mylist[i],row.names=F)

Background info about the scripting can be found here: calculating Net Squared Displacement and repeating at 0 when target is reached

Upvotes: 1

Views: 204

Answers (2)

Mike.Gahan
Mike.Gahan

Reputation: 4615

Ok. First I have some sample data:

data <- read.table(header=TRUE, text="
       X       Y AnimalID      DATE
1 550466 4789843       10 1/25/2008
2 550820 4790544       10 1/26/2008
3 551071 4791230       10 1/26/2008
4 550462 4789292       10 1/26/2008
5 550390 4789934       10 1/27/2008
6 550543 4790085       10 1/27/2008
")

Then I write it to a csv file:

write.csv(data, file="data.csv", row.names=FALSE)

Now I have a function that keeps resetting the origin if past a distance of 800.

read_march <- function(x){
  require(data.table)
  data <- fread(x)

  #Perform some quick data prep before entering animal march function
  data[, X.BEG := X[1L]]
  data[, Y.BEG := Y[1L]]
  data[, NOT.CHECKED := 1L]

      animal_march <- function(data){ 
          data[, NSD := sqrt((X.BEG-X)^2+(Y.BEG-Y)^2)]
          data[NOT.CHECKED==1L, CUM.VAL := cumsum(cumsum(NSD>800))]
          data[, X.BEG := ifelse(CUM.VAL>1L, data[CUM.VAL==1L]$X, X.BEG)]
          data[, Y.BEG := ifelse(CUM.VAL>1L, data[CUM.VAL==1L]$Y, Y.BEG)]
          data[, NOT.CHECKED := 1*(CUM.VAL>1L)]
          data[, CUM.VAL := 0L]

        if (data[, sum(NOT.CHECKED)]==0L){
          data[, GRP := .GRP, by=.(X.BEG,Y.BEG)] #Here, GRP is created
          return(data)
        } else {
          return(animal_march(data))
        }
      }

  result <- animal_march(data=data)
  return(result)
}

The next step is just to cycle through all of the csvs and apply our read and march function (we only have 1 csv here).

#Apply function to each csv file
library(data.table)
files = list.files(pattern="*.csv")
animal.csvs <- lapply(files, function(x) read_march(x))
big.animal.data <- rbindlist(animal.csvs) #Retrieve one big dataset

Here is the print-out:

> big.animal.data
        X       Y AnimalID      DATE  X.BEG   Y.BEG NOT.CHECKED       NSD CUM.VAL GRP
1: 550466 4789843       10 1/25/2008 550466 4789843           0    0.0000       0   1
2: 550820 4790544       10 1/26/2008 550466 4789843           0  785.3133       0   1
3: 551071 4791230       10 1/26/2008 550466 4789843           0 1513.2065       0   1
4: 550462 4789292       10 1/26/2008 551071 4791230           0 2031.4342       0   2
5: 550390 4789934       10 1/27/2008 550462 4789292           0  646.0248       0   3
6: 550543 4790085       10 1/27/2008 550462 4789292           0  797.1261       0   3

Notice how X.BEG and Y.BEG keep changing after the distance of 800 is exceeded.

Upvotes: 2

cdeterman
cdeterman

Reputation: 19970

The apply functions are essentially nothing more than fancy for loops. In your example, you have a list of the matrices from your csv files.

lapply(mylist, function(x) ...)

This means for each element of your list (i.e. matrix/data.frame) is represented as x. Therefore, you can put your functions within brackets after the function(x). As a very simple example:

mat <- matrix(seq(9), ncol= 3)
mat1 <- matrix(seq(12), ncol=4)
mylist <- list(mat, mat1)
lapply(mylist, function(x) {
    nr <- nrow(x)
    nc <- ncol(x)
    return(c(nr, nc))
})

Obviously with this example I could have used dim but this demonstrates how you can have multiple lines within your lapply. However, I cannot give you much further information regarding your actual code. It isn't clear from your example script which object is your matrix/data.frame but this should get you started in the general direction.

Upvotes: 0

Related Questions