Reputation: 767
I have to scan the memory space of a calling process in C. This is for homework. My problem is that I don't fully understand virtual memory addressing.
I'm scanning the memory space by attempting to read and write to a memory address. I can not use proc files or any other method.
So my problem is setting the pointers.
From what I understand the "User Mode Space" begins at address 0x0, however, if I set my starting point to 0x0 for my function, then am I not scanning the address space for my current process? How would you recommend adjusting the pointer -- if at all -- to address the parent process address space?
edit: Ok sorry for the confusion and I appreciate the help. We can not use proc file system, because the assignment is intended for us to learn about signals.
So, basically I'm going to be trying to read and then write to an address in each page of memory to test if it is R
, RW
or not accessible. To see if I was successful I will be listening for certain signals -- I'm not sure how to go about that part yet. I will be creating a linked list of structure to represent the accessibility of the memory. The program will be compiled as a 32 bit program.
With respect to parent process and child process: the exact text states
When called, the function will scan the entire memory area of the calling process...
Perhaps I am mistaken about the child and parent interaction, due to the fact we've been covering this (fork function etc.) in class, so I assumed that my function would be scanning a parent process. I'm going to be asking for clarification from the prof.
So, judging from this picture I'm just going to start from 0x0.
Upvotes: 0
Views: 1422
Reputation: 181574
From a userland process's perspective, its address space starts at address 0x0
, but not every address in that space is valid or accessible for the process. In particular, address 0x0
itself is never a valid address. If a process attempts to access memory (in its address space) that is not actually assigned to that process then a segmentation results.
You could actually use the segmentation fault behavior to help you map out what parts of the address space are in fact assigned to the process. Install a signal handler for SIGSEGV
, and skip through the whole space, attempting to read something from somewhere in each page. Each time you trap a SIGSEGV you know that page is not mapped for your process. Go back afterward and scan each accessible page.
Do only read, however. Do not attempt to write to random memory, because much of the memory accessible to your programs is the binary code of the program itself and of the shared libraries it uses. Not only do you not want to crash the program, but also much of that memory is probably marked read-only for the process.
EDIT: Generally speaking, a process can only access its own (virtual) address space. As @cmaster observed, however, there is a syscall (ptrace()
) that allows some processes access to some other processes' memory in the context of the observed process's address space. This is how general-purpose debuggers usually work.
Upvotes: 3
Reputation: 1
You could read (from your program) the /proc/self/maps
file. Try first the following two commands in a terminal
cat /proc/self/maps
cat /proc/$$/maps
(at least to understand what are the address space)
Then read proc(5), mmap(2) and of course wikipages about processes, address space, virtual memory, MMU, shared memory, VDSO.
If you want to share memory between two processes, read first shm_overview(7)
If you can't use /proc/
(which is a pity) consider mincore(2)
You could also non-portably try reading from (and perhaps rewriting the same value using volatile int*
into) some address and catching SIGSEGV
signal (with a sigsetjmp(3) in the signal handler), and do that in a -dichotomical- loop (in multiple of 4Kbytes) - from some sane start and end addresses (certainly not from 0, but probably from (void*)0x10000
and up to (void*)0xffffffffff600000
)
See signal(7).
You could also use the Linux (Gnu libc) specific dladdr(3). Look also into ptrace(2) (which should be often used from some other process).
Also, you could study elf(5) and read your own executable ELF file. Canonically it is /proc/self/exe
(a symlink) but you should be able to get its from the argv[0]
of your main
(perhaps with the convention that your program should be started with its full path name).
Be aware of ASLR and disable it if your teacher permits that.
PS. I cannot figure out what your teacher is expecting from you.
Upvotes: 2
Reputation: 2620
It is a bit more difficult than it seems at the first sight. In Linux every process has its own memory space. Using any arbitrary memory address points to the memory space of this process only. However there are mechanisms which allow one process to access memory regions of another process. There are certain Linux functions which allow this shared memory feature. For example take a look at
this link which gives some examples of using shared memory under Linux using shmget
, shmctl
and other system calls. Also you can search for mmap
system call, which is used to map a file into a process' memory, but can also be used for the purpose of accessing memory of another process.
Upvotes: 1