Reputation: 9392
I am working on a project that will presumably have a lot of user uploaded content and also a fairly large user base. I am now looking for deploying this app to the Google Compute Engine.
I have looked up for the possible options and nginx+gunicorn seems to be a good option. In the beginning I am going to be using a single ns-1 instance with 100 GB persistent hard drive and google cloud sql for serving my database.
But I want to make things scalable so that I can add more instances and disk storage without any hustle in the future. But I am very confused how to do that. So the main concern is.
I want such setup so that I can extend my disk space and no. of Google Compute Instances whenever I want.
Upvotes: 0
Views: 102
Reputation: 1086
In order to have a fully scalable architecture, a good approach is to separate computation / serving, from file storage, and both from data storage. Going part by part:
file storage - Google Cloud Storage - by storing common service files in a GCS bucket, you get a central repository that is both highly-redundant, and scalable;
data storage - Google Cloud SQL - gives you a highly reliable, scalable MySQL-like database back-end, which can be resized at will to accommodate increasing database usage;
front-ends - GCE instance group - template-generated web / computation front-ends, setting up a resource pool into which a forwarding rule (load balancer) distributes incoming connections.
In a nutshell, this is one of the most adaptable set-ups I can think of, while you keep control over every aspect of the service and underlying infrastructure.
Upvotes: 1
Reputation: 13424
A simple approach would be to run a Python app on Google App Engine, which will auto-scale your instances (both up and down) and it supports Django, as mentioned by @spirulence in the comments.
Here are some starting points:
The last link shows which versions of Django are currently supported.
Upvotes: 0