Reputation: 9803
I am doing several experiments with x86
asm trying to see how common language constructs map into assembly. In my current experiment, I am trying to see specifically how C language pointers map to register-indirect addressing. I have written a fairly hello-world like pointer program:
#include <stdio.h>
int
main (void)
{
int value = 5;
int *int_val = &value;
printf ("The value we have is %d\n", *int_val);
return 0;
}
and compiled it to the following asm using: gcc -o pointer.s -fno-asynchronous-unwind-tables pointer.c
:[1][2]
.file "pointer.c"
.section .rodata
.LC0:
.string "The value we have is %d\n"
.text
.globl main
.type main, @function
main:
;------- function prologue
pushq %rbp
movq %rsp, %rbp
;---------------------------------
subq $32, %rsp
movq %fs:40, %rax
movq %rax, -8(%rbp)
xorl %eax, %eax
;----------------------------------
movl $5, -20(%rbp) ; This is where the value 5 is stored in `value` (automatic allocation)
;----------------------------------
leaq -20(%rbp), %rax ;; (GUESS) If I have understood correctly, this is where the address of `value` is
;; extracted, and stored into %rax
;----------------------------------
movq %rax, -16(%rbp) ;;
movq -16(%rbp), %rax ;; Why do I have two times the same instructions, with reversed operands???
;----------------------------------
movl (%rax), %eax
movl %eax, %esi
movl $.LC0, %edi
movl $0, %eax
call printf
;----------------------------------
movl $0, %eax
movq -8(%rbp), %rdx
xorq %fs:40, %rdx
je .L3
call __stack_chk_fail
.L3:
leave
ret
.size main, .-main
.ident "GCC: (Ubuntu 4.9.1-16ubuntu6) 4.9.1"
.section .note.GNU-stack,"",@progbits
My issue is that I don't understand why it contains the instruction movq
two times, with reversed operands. Could someone explain it to me?
[1]: I want to avoid having my asm code interspersed with cfi directives when I don't need them at all.
[2]: My environment is Ubuntu 14.10
, gcc 4.9.1
(modified by ubuntu), and Gnu assembler (GNU Binutils for Ubuntu) 2.24.90.20141014
, configured to target x86_64-linux-gnu
Upvotes: 10
Views: 631
Reputation: 126418
Since you're not doing any optimization, gcc creates very simple-minded code that does each statement in the program one at a time without looking at any other statement. So in your example, it stores a value into the variable int_val
, and then the very next instruction reads that variable again as part of the next statement. In both cases, it is using %rax
as the temporary to hold value, as that's the first register generally used for things.
Upvotes: 4
Reputation: 14409
Maybe it will be clearer if you reorganize your blocks:
;----------------------------------
leaq -20(%rbp), %rax ; &value
movq %rax, -16(%rbp) ; int_val
;----------------------------------
movq -16(%rbp), %rax ; int_val
movl (%rax), %eax ; *int_val
movl %eax, %esi ; printf-argument
movl $.LC0, %edi ; printf-argument (format-string)
movl $0, %eax ; no floating-point numbers
call printf
;----------------------------------
The first block performs int *int_val = &value;
, the second block performs printf ...
. Without optimization, the blocks are independent.
Upvotes: 9