Reputation: 201
I am trying to use scikit-learn to make predictions on data that I have obtained from the Ebay API. I want to know the best way to go about converting this data in to a format which can be used for a multi-class classification problem with scikit-learn. The only way it explains of importing external data on the scikit-learn website seems to be to load from an svmlight file, shown here:
http://scikit-learn.org/stable/datasets/
I want to use the data on a number of algorithms and not just an SVM. I have the data in a dict object using the following code:
from ebaysdk.finding import Connection as Finding
from requests.exceptions import ConnectionError
try:
api = Finding(appid="my_app_id")
api_request = {'keywords': 'Samsung Galaxy S5 G900R4 16GB', 'itemFilter': [{'name': 'SoldItemsOnly',
'value': 'true'}], 'outputSelector': 'SellerInfo', 'GLOBAL-ID': 'EBAY- GB'}
response = api.execute('findCompletedItems', api_request)
#print(response.dict())
except ConnectionError as e:
print(e)
print(e.response.dict())
I have searched online for tutorials or an explanation of how to go about doing this, but I can't find anything useful, which goes in to enough detail on how to convert the data to the format I require and what exactly that format needs to be.
Please can someone give me some guidance on if I should use an svmlight file to achieve this and how to go about doing it, or if there are any other suggestions for importing my data in. I am new to Machine Learning, as well as Python and scikit-learn, so any help is appreciated.
Here is an example of the format that the raw data is in:
{'autoPay': 'true',
'condition': {'conditionDisplayName': 'Used', 'conditionId': '3000'},
'country': 'US',
'galleryURL': 'http://thumbs4.ebaystatic.com/m/mO-HwGeodkgYX6sRbPyFsrg/140.jpg',
'globalId': 'EBAY-US',
'isMultiVariationListing': 'false',
'itemId': '201265198351',
'listingInfo': {'bestOfferEnabled': 'false',
'buyItNowAvailable': 'false',
'endTime': '2015-01-16T00:23:19.000Z',
'gift': 'false',
'listingType': 'StoreInventory',
'startTime': '2015-01-15T15:47:38.000Z'},
'location': 'Dandridge,TN,USA',
'paymentMethod': 'PayPal',
'postalCode': '37725',
'primaryCategory': {'categoryId': '9355',
'categoryName': 'Cell Phones & Smartphones'},
'productId': {'_type': 'ReferenceID', 'value': '182557948'},
'returnsAccepted': 'true',
'sellerInfo': {'feedbackRatingStar': 'Turquoise',
'feedbackScore': '445',
'positiveFeedbackPercent': '100.0',
'sellerUserName': 'dadscritter15'},
'sellingStatus': {'convertedCurrentPrice': {'_currencyId': 'USD',
'value': '279.99'},
'currentPrice': {'_currencyId': 'USD', 'value': '279.99'},
'sellingState': 'Ended'},
'shippingInfo': {'expeditedShipping': 'true',
'handlingTime': '2',
'oneDayShippingAvailable': 'false',
'shipToLocations': ['US',
'CA',
'GB',
'AU',
'AT',
'BE',
'FR',
'DE',
'IT',
'JP',
'ES',
'CH',
'NL',
'CN',
'HK',
'MX'],
'shippingServiceCost': {'_currencyId': 'USD', 'value': '0.0'},
'shippingType': 'FlatDomesticCalculatedInternational'},
'title': 'Samsung Galaxy S5 SM-G900R4 (Latest Model) 16GB White (U.S. Cellular) Verify ESN',
'topRatedListing': 'false',
'viewItemURL': 'http://www.ebay.com/itm/Samsung-Galaxy-S5-SM-G900R4-Latest-Model-16GB-White-U-S-Cellular-Verify-ESN-/201265198351?pt=LH_DefaultDomain_0'},
{'autoPay': 'true',
'condition': {'conditionDisplayName': 'Used', 'conditionId': '3000'},
'country': 'US',
'galleryURL': 'http://thumbs4.ebaystatic.com/m/mO-HwGeodkgYX6sRbPyFsrg/140.jpg',
'globalId': 'EBAY-US',
'isMultiVariationListing': 'false',
'itemId': '201265198351',
'listingInfo': {'bestOfferEnabled': 'false',
'buyItNowAvailable': 'false',
'endTime': '2015-01-16T00:23:19.000Z',
'gift': 'false',
'listingType': 'StoreInventory',
'startTime': '2015-01-15T15:47:38.000Z'},
'location': 'Dandridge,TN,USA',
'paymentMethod': 'PayPal',
'postalCode': '37725',
'primaryCategory': {'categoryId': '9355',
'categoryName': 'Cell Phones & Smartphones'},
'productId': {'_type': 'ReferenceID', 'value': '182557948'},
'returnsAccepted': 'true',
'sellerInfo': {'feedbackRatingStar': 'Turquoise',
'feedbackScore': '445',
'positiveFeedbackPercent': '100.0',
'sellerUserName': 'dadscritter15'},
'sellingStatus': {'convertedCurrentPrice': {'_currencyId': 'USD',
'value': '279.99'},
'currentPrice': {'_currencyId': 'USD', 'value': '279.99'},
'sellingState': 'Ended'},
'shippingInfo': {'expeditedShipping': 'true',
'handlingTime': '2',
'oneDayShippingAvailable': 'false',
'shipToLocations': ['US',
'CA',
'GB',
'AU',
'AT',
'BE',
'FR',
'DE',
'IT',
'JP',
'ES',
'CH',
'NL',
'CN',
'HK',
'MX'],
'shippingServiceCost': {'_currencyId': 'USD', 'value': '0.0'},
'shippingType': 'FlatDomesticCalculatedInternational'},
'title': 'Samsung Galaxy S5 SM-G900R4 (Latest Model) 16GB White (U.S. Cellular) Verify ESN',
'topRatedListing': 'false',
'viewItemURL': 'http://www.ebay.com/itm/Samsung-Galaxy-S5-SM-G900R4-Latest-Model-16GB-White-U-S-Cellular-Verify-ESN-/201265198351?pt=LH_DefaultDomain_0'}
Upvotes: 0
Views: 735
Reputation: 40973
If you have a list of dicts, with one json/dict representing a product you can do:
>>> df = pd.DataFrame([dict1, dict2])
>>> df
autoPay condition country galleryURL globalId isMultiVariationListing itemId listingInfo location paymentMethod postalCode primaryCategory productId returnsAccepted sellerInfo sellingStatus shippingInfo title topRatedListing viewItemURL
0 true {u'conditionId': u'3000', u'conditionDisplayNa... US http://thumbs4.ebaystatic.com/m/mO-HwGeodkgYX6... EBAY-US false 201265198351 {u'listingType': u'StoreInventory', u'gift': u... Dandridge,TN,USA PayPal 37725 {u'categoryId': u'9355', u'categoryName': u'Ce... {u'_type': u'ReferenceID', u'value': u'1825579... true {u'feedbackRatingStar': u'Turquoise', u'positi... {u'currentPrice': {u'_currencyId': u'USD', u'v... {u'expeditedShipping': u'true', u'shipToLocati... Samsung Galaxy S5 SM-G900R4 (Latest Model) 16G... false http://www.ebay.com/itm/Samsung-Galaxy-S5-SM-G...
1 false {u'conditionId': u'3000', u'conditionDisplayNa... US http://thumbs4.ebaystatic.com/m/mO-HwGeodkgYX6... EBAY-US false 201265198351 {u'listingType': u'StoreInventory', u'gift': u... Dandridge,TN,USA PayPal 37725 {u'categoryId': u'9355', u'categoryName': u'Ce... {u'_type': u'ReferenceID', u'value': u'1825579... true {u'feedbackRatingStar': u'Turquoise', u'positi... {u'currentPrice': {u'_currencyId': u'USD', u'v... {u'expeditedShipping': u'true', u'shipToLocati... Samsung Galaxy S5 SM-G900R4 (Latest Model) 16G... false http://www.ebay.com/itm/Samsung-Galaxy-S5-SM-G...
Then you can use the columns of this df as input to your model. You probably want to extract the data in the nested dicts.
Upvotes: 1