Reputation: 51
I am trying to solve the following equation numerically under Matlab2014b environment.However matlab does not output numerically solutions, it instead output the following
>>solve(1/beta(13,11)*x^(12)*(1-x)^(10)==1.8839,x)
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 - (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[1]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 + (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[1]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 - (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[2]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 + (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[2]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 - (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[3]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 + (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[3]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 - (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[4]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 + (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[4]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 - (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[5]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 + (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[5]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 - (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[6]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 + (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[6]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 - (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[7]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 + (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[7]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 - (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[8]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 + (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[8]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 - (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[9]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 + (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[9]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 - (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[10]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 + (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[10]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 - (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[11]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 + (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[11]
On the other hand, I have no problem of solving the equation with Wolframmath. I am wondering what cause the problem, it may worth noting that the equation does have complex solution but I am only interested in the solution between 0 and 1.
Upvotes: 1
Views: 1921
Reputation: 465
I encountered the same problem just now and I think I've found the solution.
From the information I get, MATLAB does this sometime to simply the representation of a analytic solution. To evaluate the solutions, simply call vpa
function. Here is a minimal reproduction and solution.
syms x
solve(x^5 + x + 7)
The result will be like
ans =
RootOf(z^5 + z + 7, z)[1]
RootOf(z^5 + z + 7, z)[2]
RootOf(z^5 + z + 7, z)[3]
RootOf(z^5 + z + 7, z)[4]
RootOf(z^5 + z + 7, z)[5]
Simply try
vpa(ans)
Then the numerical result will show:
ans =
-1.4108138510595771319852918753499
- 0.5084694089730227818822736708423 + 1.3686164883298987835863274173391i
- 0.5084694089730227818822736708423 - 1.3686164883298987835863274173391i
1.2138763345028113478749196085173 + 0.92418811092205120320563065825557i
1.2138763345028113478749196085173 - 0.92418811092205120320563065825557i
See MATLAB documentation for detail:
http://au.mathworks.com/help/symbolic/solve.html#zmw57dd0e111869
Upvotes: 1