Reputation:
I would like to change the metric from RMSE to RMSLE using the
caret library
Given some sample data:
ivar1<-rnorm(500, mean = 3, sd = 1)
ivar2<-rnorm(500, mean = 4, sd = 1)
ivar3<-rnorm(500, mean = 5, sd = 1)
ivar4<-rnorm(500, mean = 4, sd = 1)
dvar<-rpois(500, exp(3+ 0.1*ivar1 - 0.25*ivar2))
data<-data.frame(dvar,ivar4,ivar3,ivar2,ivar1)
ctrl <- rfeControl(functions=rfFuncs,
method="cv",
repeats = 5,
verbose = FALSE,
number=5)
model <- rfe(data[,2:4], data[,1], sizes=c(1:4), rfeControl=ctrl)
Here I would like to change to RMSLE and keeping the idea of the graph
plot <-ggplot(model,type=c("g", "o"), metric="RMSE")+ scale_x_continuous(breaks = 2:4, labels = names(data)[2:4])
Upvotes: 12
Views: 1918
Reputation: 25844
Im not sure how / if you can easily convert RMSE to RMSLE, so you can try changing the control function.
Look at rfFuncs$summary
it calls a function postResample
. This is where the RMSE is calculated - look at the section
mse <- mean((pred - obs)^2)
n <- length(obs)
out <- c(sqrt(mse), resamplCor^2)
So you can amend this function to calculate the RMSLE instead:
msle <- mean((log(pred) - log(obs))^2)
out <- sqrt(msle)
}
names(out) <- "RMSLE"
Then if this amended function has been saved in a function called mypostResample
, you then need to update the rfFuncs$summary
.
So altogether:
First update the summary function - this will call the new function with RMSLE
newSumm <- function (data, lev = NULL, model = NULL)
{
if (is.character(data$obs))
data$obs <- factor(data$obs, levels = lev)
mypostResample(data[, "pred"], data[, "obs"])
}
Then define new function to calculate RMSLE
mypostResample <- function (pred, obs)
{
isNA <- is.na(pred)
pred <- pred[!isNA]
obs <- obs[!isNA]
msle <- mean((log(pred) - log(obs))^2)
out <- sqrt(msle)
names(out) <- "RMSLE"
if (any(is.nan(out)))
out[is.nan(out)] <- NA
out
}
Update rfFuncs
# keep old settings for future use
oldSumm <- rfFuncs$summary
# update with new function
rfFuncs$summary <- newSumm
ctrl <- rfeControl(functions=rfFuncs,
method="cv",
repeats = 5,
verbose = FALSE,
number=5)
set.seed(1)
model <- rfe(data[,2:4], data[,1], sizes=c(1:4), rfeControl=ctrl, metric="RMSLE")
# plot
ggplot(model,type=c("g", "o"), metric="RMSLE")+ scale_x_continuous(breaks = 2:4, labels = names(data)[2:4])
Upvotes: 11