Reputation: 13850
I tried using the code presented here to find ALL duplicated elements with dplyr
like this:
library(dplyr)
mtcars %>%
mutate(cyl.dup = cyl[duplicated(cyl) | duplicated(cyl, from.last = TRUE)])
How can I convert code presented here to find ALL duplicated elements with dplyr
? My code above just throws an error? Or even better, is there another function that will achieve this more succinctly than the convoluted x[duplicated(x) | duplicated(x, from.last = TRUE)])
approach?
Upvotes: 124
Views: 152753
Reputation: 859
There's a function repeated
for it in package xlr
.
See: https://rpubs.com/Eauleaf/xlr
library(dplyr)
library(xlr)
mtcars |> filter(repeated(cyl))
Upvotes: 0
Reputation: 146
A more general solution if you want to group duplicates using many columns
df%>%
select(ID,COL1,COL2,all_of(vector_of_columns))%>%
distinct%>%
ungroup%>%rowwise%>%
mutate(ID_GROUPS=paste0(ID,"_",cur_group_rows()))%>%
ungroup%>%
full_join(.,df,by=c("INFO_ID","COL1","COL2",vector_of_columns))->chk
Upvotes: 0
Reputation: 590
You can create a Boolean mask with duplicated():
iris %>% duplicated()
[1] FALSE FALSE FALSE .... TRUE FALSE
[145] FALSE FALSE FALSE FALSE FALSE FALSE
And pass through square brackets indexing:
iris[iris %>% duplicated(),]
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
143 5.8 2.7 5.1 1.9 virginica
Note: This approach is the closest thing to Pandas that could be done with R and dplyr:
iris[iris %>% duplicated(), c("Petal.Length","Petal.Width","Species")]
Petal.Length Petal.Width Species
143 5.1 1.9 virginica
Upvotes: 0
Reputation: 139
Find duplicate value in data frame with column
df<-dataset[duplicated(dataset$columnname),]
Upvotes: 0
Reputation:
Another solution is to use janitor
package:
mtcars %>% get_dupes(wt)
Upvotes: 60
Reputation: 381
The original post contains an error in using the solution from the related answer. In the example given, when you use that solution inside mutate, it tries to subset the cyl vector which will not be of the same length as the mtcars dataframe.
Instead you can use the following example with filter returning all duplicated elements or mutate with ifelse to create a dummy variable which can be filtered upon later:
library(dplyr)
# Return all duplicated elements
mtcars %>%
filter(duplicated(cyl) | duplicated(cyl, fromLast = TRUE))
# Or for making dummy variable of all duplicated
mtcars %>%
mutate(cyl.dup =ifelse(duplicated(cyl) | duplicated(cyl, fromLast = TRUE), 1,0))
Upvotes: 25
Reputation: 119
# Adding a shortcut to the answer above
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
mtcars %>% count(carb)
#> # A tibble: 6 x 2
#> carb n
#> <dbl> <int>
#> 1 1. 7
#> 2 2. 10
#> 3 3. 3
#> 4 4. 10
#> 5 6. 1
#> 6 8. 1
mtcars %>% count(carb) %>% filter(n > 1)
#> # A tibble: 4 x 2
#> carb n
#> <dbl> <int>
#> 1 1. 7
#> 2 2. 10
#> 3 3. 3
#> 4 4. 10
# Showing an alternative that follows the apparent intention if the asker
duplicated_carb <- mtcars %>%
mutate(dup_carb = duplicated(carb)) %>%
filter(dup_carb)
duplicated_carb
#> mpg cyl disp hp drat wt qsec vs am gear carb dup_carb
#> 1 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 TRUE
#> 2 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 TRUE
#> 3 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 TRUE
#> 4 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 TRUE
#> 5 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 TRUE
#> 6 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 TRUE
#> 7 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 TRUE
#> 8 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 TRUE
#> 9 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 TRUE
#> 10 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 TRUE
#> 11 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 TRUE
#> 12 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 TRUE
#> 13 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 TRUE
#> 14 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 TRUE
#> 15 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 TRUE
#> 16 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 TRUE
#> 17 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 TRUE
#> 18 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 TRUE
#> 19 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 TRUE
#> 20 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 TRUE
#> 21 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 TRUE
#> 22 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 TRUE
#> 23 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 TRUE
#> 24 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 TRUE
#> 25 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 TRUE
#> 26 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 TRUE
Upvotes: 6
Reputation: 8823
We can find duplicated elements with dplyr as follows.
library(dplyr)
# Only duplicated elements
mtcars %>%
filter(duplicated(.[["carb"]])
# All duplicated elements
mtcars %>%
filter(carb %in% unique(.[["carb"]][duplicated(.[["carb"]])]))
Upvotes: 23
Reputation: 13314
I guess you could use filter
for this purpose:
mtcars %>%
group_by(carb) %>%
filter(n()>1)
Small example (note that I added summarize()
to prove that the resulting data set does not contain rows with duplicate 'carb'. I used 'carb' instead of 'cyl' because 'carb' has unique values whereas 'cyl' does not):
mtcars %>% group_by(carb) %>% summarize(n=n())
#Source: local data frame [6 x 2]
#
# carb n
#1 1 7
#2 2 10
#3 3 3
#4 4 10
#5 6 1
#6 8 1
mtcars %>% group_by(carb) %>% filter(n()>1) %>% summarize(n=n())
#Source: local data frame [4 x 2]
#
# carb n
#1 1 7
#2 2 10
#3 3 3
#4 4 10
Upvotes: 225