Reputation: 9638
I feel that extracting data from html tables is extremely difficult and requires custom build for each site.. I would very much like to be proved wrong here..
Is there an simple pythonic way to extract strings and numbers out of a website by just using the url and xpath of the table of interest?
Example:
url_str = 'http://www.fdmbenzinpriser.dk/searchprices/5/'
xpath_str = //*[@id="sortabletable"]
I once had a script that could fetch data from this site. But lost it. As I recall it I was using the tag '' and some string logic.. not very pretty
I know that sites like thingspeak can do these things..
Upvotes: 2
Views: 16603
Reputation: 879083
There is a fairly general pattern which you could use to parse many, though not all, tables.
import lxml.html as LH
import requests
import pandas as pd
def text(elt):
return elt.text_content().replace(u'\xa0', u' ')
url = 'http://www.fdmbenzinpriser.dk/searchprices/5/'
r = requests.get(url)
root = LH.fromstring(r.content)
for table in root.xpath('//table[@id="sortabletable"]'):
header = [text(th) for th in table.xpath('//th')] # 1
data = [[text(td) for td in tr.xpath('td')]
for tr in table.xpath('//tr')] # 2
data = [row for row in data if len(row)==len(header)] # 3
data = pd.DataFrame(data, columns=header) # 4
print(data)
table.xpath('//th')
to find the column names.table.xpath('//tr')
returns the rows, and for each row, tr.xpath('td')
returns the element representing one "cell" of the table. Pris Adresse Tidspunkt
0 8.04 Brovejen 18 5500 Middelfart 3 min 38 sek
1 7.88 Hovedvejen 11 5500 Middelfart 4 min 52 sek
2 7.88 Assensvej 105 5500 Middelfart 5 min 56 sek
3 8.23 Ejby Industrivej 111 2600 Glostrup 6 min 28 sek
4 8.15 Park Alle 125 2605 Brøndby 25 min 21 sek
5 8.09 Sletvej 36 8310 Tranbjerg J 25 min 34 sek
6 8.24 Vindinggård Center 29 7100 Vejle 27 min 6 sek
7 7.99 * Søndergade 116 8620 Kjellerup 31 min 27 sek
8 7.99 * Gertrud Rasks Vej 1 9210 Aalborg SØ 31 min 27 sek
9 7.99 * Sorøvej 13 4200 Slagelse 31 min 27 sek
Upvotes: 9
Reputation: 180391
If you mean all the text:
from bs4 import BeautifulSoup
url_str = 'http://www.fdmbenzinpriser.dk/searchprices/5/'
import requests
r = requests.get(url_str).content
print([x.text for x in BeautifulSoup(r).find_all("table",attrs={"id":"sortabletable"})]
['Pris\nAdresse\nTidspunkt\n\n\n\n\n* Denne pris er indberettet af selskabet Indberet pris\n\n\n\n\n\n\xa08.24\n\xa0Gladsaxe Møllevej 33 2860 Søborg\n7 min 4 sek \n\n\n\n\xa08.89\n\xa0Frederikssundsvej 356 2700 Brønshøj\n9 min 10 sek \n\n\n\n\xa07.98\n\xa0Gartnerivej 1 7500 Holstebro\n14 min 25 sek \n\n\n\n\xa07.99 *\n\xa0Søndergade 116 8620 Kjellerup\n15 min 7 sek \n\n\n\n\xa07.99 *\n\xa0Gertrud Rasks Vej 1 9210 Aalborg SØ\n15 min 7 sek \n\n\n\n\xa07.99 *\n\xa0Sorøvej 13 4200 Slagelse\n15 min 7 sek \n\n\n\n\xa08.08 *\n\xa0Tørholmsvej 95 9800 Hjørring\n15 min 7 sek \n\n\n\n\xa08.09 *\n\xa0Nordvej 6 9900 Frederikshavn\n15 min 7 sek \n\n\n\n\xa08.09 *\n\xa0Skelmosevej 89 6980 Tim\n15 min 7 sek \n\n\n\n\xa08.09 *\n\xa0Højgårdsvej 2 4000 Roskilde\n15 min 7 sek']
Upvotes: 1