Reputation: 335
I wish to have a single producer, multiple consumer architecture in Python while performing multi-threaded programming. I wish to have an operation like this :
So I need all the consumers to to get the same data from the producer.
When I used Queue to perform this, I realized that all but the first consumer would be starved with the implementation I have.
One possible solution is to have a unique queue for each of the consumer threads wherein the same data is pushed in multiple queues by the producer. Is there a better way to do this ?
from threading import Thread
import time
import random
from Queue import Queue
my_queue = Queue(0)
def Producer():
global my_queue
my_list = []
for each in range (50):
my_list.append(each)
my_queue.put(my_list)
def Consumer1():
print "Consumer1"
global my_queue
print my_queue.get()
my_queue.task_done()
def Consumer2():
print "Consumer2"
global my_queue
print my_queue.get()
my_queue.task_done()
P = Thread(name = "Producer", target = Producer)
C1 = Thread(name = "Consumer1", target = Consumer1)
C2 = Thread(name = "Consumer2", target = Consumer2)
P.start()
C1.start()
C2.start()
In the example above, the C2 gets blocked indefinitely as C1 consumes the data produced by P1. What I would rather want is for C1 and C2 both to be able to access the SAME data as produced by P1.
Thanks for any code/pointers!
Upvotes: 16
Views: 13079
Reputation: 1412
I do know it might be an overkill, but... What about using signal/slot
framework from Qt? For consistency, QThread
could be used instead of threading.Thread
from __future__ import annotations # Needed for forward Consumer typehint in register_consumer
from queue import Queue
from typing import List
from PySide2.QtCore import QThread, QObject, QCoreApplication, Signal, Slot, Qt
import time
import random
def thread_name():
# Convenient class
return QThread.currentThread().objectName()
class Producer(QThread):
product_available = Signal(list)
def __init__(self):
QThread.__init__(self, objectName='ThreadProducer')
self.consumers: List[Consumer] = list()
# See Consumer class comments for info (exactly the same reason here)
self.internal_consumer_queue = Queue()
self.active = True
def run(self):
my_list = [each for each in range(5)]
self.product_available.emit(my_list)
print(f'Producer: from thread {QThread.currentThread().objectName()} I\'ve sent my products\n')
while self.active:
consumer: Consumer = self.internal_consumer_queue.get(block=True)
print(f'Producer: {consumer} has told me it has completed his task with my product! '
f'(Thread {thread_name()})')
if not consumer in self.consumers:
raise ValueError(f'Consumer {consumer} was not registered')
self.consumers.remove(consumer)
if len(self.consumers) == 0:
print('All consumers have completed their task! I\'m terminating myself')
self.active = False
@Slot(object)
def on_task_done_by_consumer(self, consumer: Consumer):
self.internal_consumer_queue.put(consumer)
def register_consumer(self, consumer: Consumer):
if consumer in self.consumers:
return
self.consumers.append(consumer)
consumer.task_done_with_product.connect(self.on_task_done_by_consumer)
class Consumer(QThread):
task_done_with_product = Signal(object)
def __init__(self, name: str, producer: Producer):
self.name = name
# Super init and set Thread name
QThread.__init__(self, objectName=f'Thread_Of_{self.name}')
self.producer = producer
# See method on_product_available doc
self.internal_queue = Queue()
def run(self) -> None:
self.producer.product_available.connect(self.on_product_available, Qt.ConnectionType.UniqueConnection)
# Thread loop waiting for product availability
product = self.internal_queue.get(block=True)
print(f'{self.name}: Product {product} received and elaborated in thread {thread_name()}\n\n')
# Tell the producer I've done
self.task_done_with_product.emit(self)
# Now the thread is naturally closed
@Slot(list)
def on_product_available(self, product: list):
"""
As a limitation of PySide, it seems that list are not supported for QueuedConnection. This work around using
internal queue might solve
"""
# This is executed in Main Loop!
print(f'{self.name}: In thread {thread_name()} I received the product, and I\'m queuing it for being elaborated'
f'in consumer thread')
self.internal_queue.put(product)
# Quit the thread
self.active = False
def __repr__(self):
# Needed in case of exception for representing current consumer
return f'{self.name}'
# Needed to executed main and threads event loops
app = QCoreApplication()
QThread.currentThread().setObjectName('MainThread')
producer = Producer()
c1 = Consumer('Consumer1', producer)
c1.start()
producer.register_consumer(c1)
c2 = Consumer('Consumer2', producer)
c2.start()
producer.register_consumer(c2)
producer.product_available.connect(c1.on_product_available)
producer.product_available.connect(c2.on_product_available)
# Start Producer thread for LAST!
producer.start()
app.exec_()
Results:
Producer: from thread ThreadProducer I've sent my products
Consumer1: In thread MainThread I received the product, and I'm queuing it for being elaboratedin consumer thread
Consumer1: Product [0, 1, 2, 3, 4] received and elaborated in thread Thread_Of_Consumer1
Consumer2: In thread MainThread I received the product, and I'm queuing it for being elaboratedin consumer thread
Consumer2: Product [0, 1, 2, 3, 4] received and elaborated in thread Thread_Of_Consumer2
Producer: Consumer1 has told me it has completed his task with my product! (Thread ThreadProducer)
Producer: Consumer2 has told me it has completed his task with my product! (Thread ThreadProducer)
All consumers have completed their task! I'm terminating myself
Notes:
QueueConnection
(doc here) so as to directly execute the Slot into the proper thread: an internal queueing has been used to pass information from main loop to proper thread (either Producer and Consumer). It seems that list
and object
cannot be meta-registered in PySide/pyqt for queueing purposesUpvotes: 0
Reputation: 51
A single-producers and five-consumers example, verified.
from multiprocessing import Process, JoinableQueue
import time
import os
q = JoinableQueue()
def producer():
for item in range(30):
time.sleep(2)
q.put(item)
pid = os.getpid()
print(f'producer {pid} done')
def worker():
while True:
item = q.get()
pid = os.getpid()
print(f'pid {pid} Working on {item}')
print(f'pid {pid} Finished {item}')
q.task_done()
for i in range(5):
p = Process(target=worker, daemon=True).start()
producers = []
# it is easy to extend it to multi producers.
for i in range(1):
p = Process(target=producer)
producers.append(p)
p.start()
# make sure producers done
for p in producers:
p.join()
# block until all workers are done
q.join()
print('All work completed')
Explanation:
Upvotes: 1
Reputation: 2334
Your producer creates only one job to do:
my_queue.put(my_list)
For example, put my_list twice, and both consumers work:
def Producer():
global my_queue
my_list = []
for each in range (50):
my_list.append(each)
my_queue.put(my_list)
my_queue.put(my_list)
So this way you put two jobs to queue with the same list.
However i have to warn you: to modify the same data in different threads without thread synchronization is generally bad idea.
Anyways, approach with one queue would not work for you, since one queue is supposed to be processed with threads with the same algorithm.
So, I advise you to go ahead with unique queue per each consumer, since other solutions are not as trivial.
Upvotes: 3
Reputation: 137398
How about a per-thread queue then?
As part of starting each consumer, you would also create another Queue, and add this to a list of "all thread queues". Then start the producer, passing it the list of all queues, which he can then push data into all of them.
Upvotes: 1