Reputation: 91
I'm not sure how to ask my question in a succinct way, so I'll start with examples and expand from there. I am working with VBA, but I think this problem is non language specific and would only require a bright mind that can provide a pseudo code framework. Thanks in advance for the help!
Example: I have 3 Character Arrays Like So:
Arr_1 = [X,Y,Z]
Arr_2 = [A,B]
Arr_3 = [1,2,3,4]
I would like to generate ALL possible permutations of the character arrays like so:
XA1
XA2
XA3
XA4
XB1
XB2
XB3
XB4
YA1
YA2
.
.
.
ZB3
ZB4
This can be easily solved using 3 while loops or for loops. My question is how do I solve for this if the # of arrays is unknown and the length of each array is unknown?
So as an example with 4 character arrays:
Arr_1 = [X,Y,Z]
Arr_2 = [A,B]
Arr_3 = [1,2,3,4]
Arr_4 = [a,b]
I would need to generate:
XA1a
XA1b
XA2a
XA2b
XA3a
XA3b
XA4a
XA4b
.
.
.
ZB4a
ZB4b
So the Generalized Example would be:
Arr_1 = [...]
Arr_2 = [...]
Arr_3 = [...]
.
.
.
Arr_x = [...]
Is there a way to structure a function that will generate an unknown number of loops and loop through the length of each array to generate the permutations? Or maybe there's a better way to think about the problem?
Thanks Everyone!
Upvotes: 9
Views: 6237
Reputation: 37
Thanks to @polygenelubricants for the excellent solution. Here is the Javascript equivalent:
var a=['0'];
var b=['Auto', 'Home'];
var c=['Good'];
var d=['Tommy', 'Hilfiger', '*'];
var attrs = [a, b, c, d];
function recurse (s, attrs, k) {
if(k==attrs.length) {
console.log(s);
} else {
for(var i=0; i<attrs[k].length;i++) {
recurse(s+attrs[k][i], attrs, k+1);
}
}
}
recurse('', attrs, 0);
Upvotes: 4
Reputation: 6476
EDIT: Here's a ruby solution. Its pretty much the same as my other solution below, but assumes your input character arrays are words: So you can type:
% perm.rb ruby is cool
~/bin/perm.rb
#!/usr/bin/env ruby
def perm(args)
peg = Hash[args.collect {|v| [v,0]}]
nperms= 1
args.each { |a| nperms *= a.length }
perms = Array.new(nperms, "")
nperms.times do |p|
args.each { |a| perms[p] += a[peg[a]] }
args.each do |a|
peg[a] += 1
break if peg[a] < a.length
peg[a] = 0
end
end
perms
end
puts perm ARGV
OLD - I have a script to do this in MEL, (Maya's Embedded Language) - I'll try to translate to something C like, but don't expect it to run without a bit of fixing;) It works in Maya though.
First - throw all the arrays together in one long array with delimiters. (I'll leave that to you - because in my system it rips the values out of a UI). So, this means the delimiters will be taking up extra slots: To use your sample data above:
string delimitedArray[] = {"X","Y","Z","|","A","B","|","1","2","3","4","|"};
Of course you can concatenate as many arrays as you like.
string[] getPerms( string delimitedArray[]) {
string result[];
string delimiter("|");
string compactArray[]; // will be the same as delimitedArray, but without the "|" delimiters
int arraySizes[]; // will hold number of vals for each array
int offsets[]; // offsets will holds the indices where each new array starts.
int counters[]; // the values that will increment in the following loops, like pegs in each array
int nPemutations = 1;
int arrSize, offset, nArrays;
// do a prepass to find some information about the structure, and to build the compact array
for (s in delimitedArray) {
if (s == delimiter) {
nPemutations *= arrSize; // arrSize will have been counting elements
arraySizes[nArrays] = arrSize;
counters[nArrays] = 0; // reset the counter
nArrays ++; // nArrays goes up every time we find a new array
offsets.append(offset - arrSize) ; //its here, at the end of an array that we store the offset of this array
arrSize=0;
} else { // its one of the elements, not a delimiter
compactArray.append(s);
arrSize++;
offset++;
}
}
// put a bail out here if you like
if( nPemutations > 256) error("too many permutations " + nPemutations+". max is 256");
// now figure out the permutations
for (p=0;p<nPemutations;p++) {
string perm ="";
// In each array at the position of that array's counter
for (i=0;i<nArrays ;i++) {
int delimitedArrayIndex = counters[i] + offsets[i] ;
// build the string
perm += (compactArray[delimitedArrayIndex]);
}
result.append(perm);
// the interesting bit
// increment the array counters, but in fact the program
// will only get to increment a counter if the previous counter
// reached the end of its array, otherwise we break
for (i = 0; i < nArrays; ++i) {
counters[i] += 1;
if (counters[i] < arraySizes[i])
break;
counters[i] = 0;
}
}
return result;
}
Upvotes: 1
Reputation: 383876
This is actually the easiest, most straightforward solution. The following is in Java, but it should be instructive:
public class Main {
public static void main(String[] args) {
Object[][] arrs = {
{ "X", "Y", "Z" },
{ "A", "B" },
{ "1", "2" },
};
recurse("", arrs, 0);
}
static void recurse (String s, Object[][] arrs, int k) {
if (k == arrs.length) {
System.out.println(s);
} else {
for (Object o : arrs[k]) {
recurse(s + o, arrs, k + 1);
}
}
}
}
Note: Java arrays are 0-based, so k
goes from 0..arrs.length-1
during the recursion, until k == arrs.length
when it's the end of recursion.
It's also possible to write a non-recursive solution, but frankly this is less intuitive. This is actually very similar to base conversion, e.g. from decimal to hexadecimal; it's a generalized form where each position have their own set of values.
public class Main {
public static void main(String[] args) {
Object[][] arrs = {
{ "X", "Y", "Z" },
{ "A", "B" },
{ "1", "2" },
};
int N = 1;
for (Object[] arr : arrs) {
N = N * arr.length;
}
for (int v = 0; v < N; v++) {
System.out.println(decode(arrs, v));
}
}
static String decode(Object[][] arrs, int v) {
String s = "";
for (Object[] arr : arrs) {
int M = arr.length;
s = s + arr[v % M];
v = v / M;
}
return s;
}
}
This produces the tuplets in a different order. If you want to generate them in the same order as the recursive solution, then you iterate through arrs
"backward" during decode
as follows:
static String decode(Object[][] arrs, int v) {
String s = "";
for (int i = arrs.length - 1; i >= 0; i--) {
int Ni = arrs[i].length;
s = arrs[i][v % Ni] + s;
v = v / Ni;
}
return s;
}
Upvotes: 7
Reputation: 15041
it sounds like you've almost got it figured out already.
What if you put in there one more array, call it, say ArrayHolder
, that holds all of your unknown number of arrays of unknown length. Then, you just need another loop, no?
Upvotes: 0
Reputation: 5252
If I understand the question correctly, I think you could put all your arrays into another array, thereby creating a jagged array.
Then, loop through all the arrays in your jagged array creating all the permutations you need.
Does that make sense?
Upvotes: 0