Reputation: 7374
I want to have a generic type that can represent any class in a simple class diagram. In this case a class contains:
I have only used simple ADT declarations which is not working in this case, for example this is what I have been stuck with but it gives me no where near the type of flexibility I'm after:
data Attr a = Attr { name :: String
, kind :: a}
deriving (Show)
data Action = Action { name1 :: String
, params :: [Attr Int]}
deriving (Show)
data Class a = NewC { name2 :: String
, attrs :: [Attr Int]
, actions :: [Action]}
deriving (Show)
So my question is now how would I go about representing any arbitrary class in Haskell?
I do not want to do OOP in haskell. Imaging that the class type I'm trying to make will be a node in a graph. However each node in the graph will be a different class.
Upvotes: 1
Views: 100
Reputation: 724
I think you want to represent your class diagrams entirely as values rather than a mix of values and types. Instead of Attr Int
, for example, you might use something like Attr { name="Int", kind=PrimitiveInt }
. I've introduced an OopType
type below.
data Attr = Attr { name :: String
, kind :: OopType}
deriving (Show)
data Action = Action { name1 :: String
, params :: [Attr]}
deriving (Show)
data Class = NewC { name2 :: String
, attrs :: [Attr]
, actions :: [Action]}
deriving (Show)
data OopType = ClassType Class
| InterfaceType Class -- TODO make a dedicated interface type
| Enum -- TODO make a dedicated enum type
| PrimitiveString
| PrimitiveInt
Note that this representation doesn't model 'generics' (that is, classes that are parameterised by types). To do that, you'd add another field to the Class type.
Upvotes: 2