Reputation: 13969
I would like to create a dataframe with confidence intervals for proportions as a final result. I have introduced a variable (tp in my example) as a cut off value to calculate the proportions for. I would like to use the dplyr package to produce the final dataframe. Below is a simplified example:
library(dplyr)
my_names <- c("A","B")
dt <- data.frame(
Z = sample(my_names,100,replace = TRUE),
X = sample(1:10, replace = TRUE),
Y = sample(c(0,1), 100, replace = TRUE)
)
my.df <- dt%>%
mutate(tp = (X >8)* 1) %>% #multiply by one to convert into numeric
group_by(Z, tp) %>%
summarise(n = n()) %>%
mutate(prop.tp= n/sum(n)) %>%
mutate(SE.tp = sqrt((prop.tp*(1-prop.tp))/n))%>%
mutate(Lower_limit = prop.tp-1.96 * SE.tp)%>%
mutate(Upper_limit = prop.tp+1.96 * SE.tp)
output:
Source: local data frame [4 x 7]
Groups: Z
Z tp n prop.tp SE.tp Lower_limit Upper_limit
1 A 0 33 0.6346154 0.08382498 0.4703184 0.7989123
2 A 1 19 0.3653846 0.11047236 0.1488588 0.5819104
3 B 0 27 0.5625000 0.09547033 0.3753782 0.7496218
4 B 1 21 0.4375000 0.10825318 0.2253238 0.6496762
However, I would like to calculate the Standard error and the CI:s using the total sample for the groups in column Z, not the splitted sample by the categorical variable tp. So the total sample for A in my example should be n = 33 +19. Any ideas?
Upvotes: 1
Views: 723
Reputation: 14842
Not quite sure I get which group you want to compare with which here, but at any rate you have two grouping variables tp = X > 8
and Z
.
If you want to compare the rows with X > 8
and Z == "A"
to all rows with X > 8
you can do it like this
merge(
dt %>%
group_by(X > 8) %>%
summarize(n.X = n()),
dt %>%
group_by(X > 8, Z) %>%
summarise(n.XZ = n()),
by = "X > 8"
) %>%
mutate(prop.XZ = n.XZ/n.X) %>%
mutate(SE = sqrt((prop.XZ*(1-prop.XZ))/n.X))%>%
mutate(Lower_limit = prop.XZ-1.96 * SE) %>%
mutate(Upper_limit = prop.XZ+1.96 * SE)
X > 8 n.X Z n.XZ prop.XZ SE Lower_limit Upper_limit 1 FALSE 70 A 37 0.5285714 0.05966378 0.4116304 0.6455124 2 FALSE 70 B 33 0.4714286 0.05966378 0.3544876 0.5883696 3 TRUE 30 A 16 0.5333333 0.09108401 0.3548087 0.7118580 4 TRUE 30 B 14 0.4666667 0.09108401 0.2881420 0.6451913
If you want to turn the problem around and compare X > 8
and Z == "A"
to all rows with Z == "A"
you can do it like this
merge(
dt %>%
group_by(Z) %>%
summarize(n.Z = n()),
dt %>%
group_by(X > 8, Z) %>%
summarise(n.XZ = n()),
by = "Z"
) %>%
mutate(prop.XZ = n.XZ/n.Z) %>%
mutate(SE = sqrt((prop.XZ*(1-prop.XZ))/n.Z))%>%
mutate(Lower_limit = prop.XZ-1.96 * SE) %>%
mutate(Upper_limit = prop.XZ+1.96 * SE)
Z n.Z X > 8 n.XZ prop.XZ SE Lower_limit Upper_limit 1 A 53 FALSE 37 0.6981132 0.06305900 0.5745176 0.8217088 2 A 53 TRUE 16 0.3018868 0.06305900 0.1782912 0.4254824 3 B 47 FALSE 33 0.7021277 0.06670743 0.5713811 0.8328742 4 B 47 TRUE 14 0.2978723 0.06670743 0.1671258 0.4286189
It is a bit messy having to merge
two separate groupings, but I don't know if it is possible to ungroup and re-group in the same statement. I am suprised though how difficult it seems to be to use groupings on two different levels (if you can call it that) and hope someone else can come up with a better solution.
Upvotes: 1