Reputation: 315
I've spent quite a few hours on trying to figure this one out and I'm completly stuck. The program is supposed to start 6 threads. Where some threads start where others end. Right now, I'm trying to get one single thread (thread 0) to execute. The caps lock commenting shows where I have added code and done my mistakes. My main struggle here is dealing with the pointers. Could anyone give me any pointers (ha..ha.. :c )?
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <pthread.h>
#include <semaphore.h>
#define SHARED 1
sem_t sem[6];
struct threadargs
{
int id; /* thread number */
int sec; /* how many sec to sleep */
int signal[6]; /* which threads to signal when done */
};
void *tfunc(void *arg)
{
int i;
struct threadargs *targs=arg;
sem_wait(sem); //WAIT FOR OWN SEMAPHORE
printf("Thread %d is running\n", targs->id);
sleep(targs->sec);
printf("Thread %d is completed and may wake others..\n", targs->id);
for(i=0; i<6; i++) //ITERATE OVER signal_ARRAY &
{ //WAKE THREAD NUMBER i IF
if(targs->signal[i] == 1) //signal[i] IS 1
pthread_cond_signal(&sem[i]);
}
}
int main(void)
{
int i, j;
struct threadargs *targs[6];
pthread_t tid[6];
for(i=0; i<6; i++)
{
targs[i] = (struct threadargs*) malloc(sizeof(struct threadargs));
for(j=0; j<6; j++)
{ targs[i]->signal[j]=0; }
}
targs[0]->id=1;
targs[0]->sec=1;
targs[0]->signal[1]=1;
targs[0]->signal[4]=1;
sem[0] = 0; //INITIALIZE THREAD'S SEMAPHORE TO 0 or 1
pthread_create(targs[0], NULL, tfunc, NULL) // START THREAD
for(i=0; i<6; i++)
pthread_join(tid[i], NULL);
return 0;
}
Upvotes: 1
Views: 1051
Reputation: 123
Alright. First things first, I do recommend taking a second look at your coding style. It is of course highly subjective and I won't say yours is bad, but it took me a while to figure it out (if you really want to know, I recommend the Linux coding style for C/C++ code).
Lets get on with your problem. As far as I can see, the main issue seems that you're basically comparing pointers to apples with pointers to banana's (in other words, you're using the wrong pointer type in the wrong place).
To make sure that calls to functions and the like are correct, make sure to look up the API documentation for functions that are new to you (examples: pthread_create, sem_init, sem_wait, sem_post, pthread_cond_signal).
As you can see, pthread_cond_signal doesn't take a sem_t* as argument, and therefore you can't pass one to it and expect it to work. Below you'll find an example program showing how semaphores are used.
First, a new thread is created which will be put in waiting state instantly. As soon as the main tread finished counting from 0 to 150, it will post ('unlock') the semaphore and allowing the second thread to finish its execution.
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <pthread.h>
#include <semaphore.h>
static sem_t sem_thread_one;
static pthread_t thread_one_data;
static int x;
static void *tfunc(void *arg)
{
sem_wait(&sem_thread_one);
printf("Thread 1 is running. The value of x is %i\n", x);
return NULL;
}
int main(int argc, char **argv)
{
sem_init(&sem_thread_one, 0 /* don't share between processes */, 0);
if(pthread_create(&thread_one_data, NULL, &tfunc, NULL)) {
fprintf(stderr, "Could not create thread, exiting!\n");
return -EXIT_FAILURE;
}
while(x < 150) {
x++;
}
sem_post(&sem_thread_one);
if(pthread_join(thread_one_data, NULL)) {
fprintf(stderr, "Could not join threads, exiting!\n");
return -EXIT_FAILURE;
}
sem_destroy(&sem_thread_one);
printf("Program ran succesfully!\n");
return -EXIT_SUCCESS;
}
Save in a file sem.c and compile & link using:
gcc -Wall -Os -pthread -o sem_test sem.c
Now a second example, but now using pthread_cond_t. The functionality of the program is somewhat similar, it waits for a counter to reach a certain number.
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <pthread.h>
static pthread_t thread_one_data, thread_two_data;
static volatile int x, y, idx = 10;
static int count = 1;
static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t condition = PTHREAD_COND_INITIALIZER;
static void *cond_test_wait(void *arg)
{
pthread_mutex_lock(&mutex);
while(count < 10) {
printf("Waiting for `count < 10' to become true\n");
pthread_cond_wait(&condition, &mutex);
}
pthread_mutex_unlock(&mutex);
printf("Test wait thread finished. Value of count: %i\n", count);
return NULL;
}
static void *cond_test_signal(void *arg)
{
while(count < 10) {
pthread_mutex_lock(&mutex);
pthread_cond_signal(&condition);
/* do more intelligent things here */
count++;
pthread_mutex_unlock(&mutex);
}
printf("Test signal thread finished\n");
return NULL;
}
int main(int argc, char **argv)
{
if(pthread_create(&thread_one_data, NULL, &cond_test_wait, NULL)) {
fprintf(stderr, "Could not create thread, exiting!\n");
return -EXIT_FAILURE;
}
if(pthread_create(&thread_two_data, NULL, &cond_test_signal, NULL)) {
fprintf(stderr, "Could not create thread, exiting!\n");
return -EXIT_FAILURE;
}
pthread_join(thread_one_data, NULL);
pthread_join(thread_two_data, NULL);
pthread_cond_destroy(&condition);
pthread_mutex_destroy(&mutex);
printf("Program ran succesfully!\n");
return -EXIT_SUCCESS;
}
Save in a file cond.c and compile & link using:
gcc -o cond -pthread -Os -Wall cond.c
Do note how neat condition work in this example. You can use them to wait until any expression (= condition) becomes true. After the condition becomes true normal execution continue's.
If you need any more help, don't hesitate to ask in the comments. Good luck combining the above examples to fix up your program.
Upvotes: 1