Reputation: 47968
Is there a way I can measure how much stack memory a function uses?
This question isn't specific to recursive functions; however I was interested to know how much stack memory a function called recursively would take.
I was interested to optimize the function for stack memory usage; however, without knowing what optimizations the compiler is already making, it's just guess-work if this is making real improvements or not.
To be clear, this is not a question about how to optimize for better stack usage
So is there some reliable way to find out how much stack memory a function uses in C?
Note: Assuming it's not using alloca
or variable-length arrays,
it should be possible to find this at compile time.
Upvotes: 18
Views: 16483
Reputation: 47968
This is GCC specific (tested with gcc 4.9):
Add this above the function:
#pragma GCC diagnostic error "-Wframe-larger-than="
Which reports errors such as:
error: the frame size of 272 bytes is larger than 1 bytes [-Werror=frame-larger-than=]
While a slightly odd way method, you can at least do this quickly while editing the file.
You can add -fstack-usage
to your CFLAGS, which then writes out text files along side the object files.
See: https://gcc.gnu.org/onlinedocs/gnat_ugn/Static-Stack-Usage-Analysis.html
While this works very well, its may be a little inconvenient depending on your buildsystem/configuration - to build a single file with a different CFLAG, though this can of course be automated.
– (thanks to @nos's comment)
Note,
It seems most/all of the compiler natural methods rely on guessing - which isn't 100% sure to remain accurate after optimizations, so this at least gives a definitive answer using a free compiler.
Upvotes: 14
Reputation: 61949
You can very easily find out how much stack space is taken by a call to a function which has just one word of local variables in the following way:
static byte* p1;
static byte* p2;
void f1()
{
byte b;
p1 = &b;
f2();
}
void f2()
{
byte b;
p2 = &b;
}
void calculate()
{
f1();
int stack_space_used = (int)(p2 - p1);
}
(Note: the function declares a local variable which is only a byte, but the compiler will generally allocate an entire machine word for it on the stack.)
So, this will tell you how much stack space is taken by a function call. The more local variables you add to a function, the more stack space it will take. Variables defined in different scopes within the function usually don't complicate things, as the compiler will generally allocate a distinct area on the stack for every local variable without any attempt to optimize based on the fact that some of these variables might never coexist.
Upvotes: 2
Reputation: 14256
To calculate the stack usage for the current function you can do something like this:
void MyFunc( void );
void *pFnBottom = (void *)MyFunc;
void *pFnTop;
unsigned int uiStackUsage;
void MyFunc( void )
{
__asm__ ( mov pFnTop, esp );
uiStackUsage = (unsigned int)(pFnTop - pFnBottom);
}
Upvotes: 2