Reputation: 147
I’m ashamed bothering you with a stupid (but very necessary to me) question. I’ve a bunch of lat/lon points distributed almost randomly within a rectangle of ca. two x three degrees (latitude x longitude).
I need to calculate the maximum distance to the second nearest neighbor as well as the maximum distance to the farthest neighbor. I calculated these using package spatstat,
d2 <- max(nndist(data[,2:3], k = 2)
dn <- max(nndist(data[,2:3], k=(nrow(data))-1))
, respectively, and the distances obtained were 0.3 to 4.2.
I need these distances in kilometers.
So, I supposed that distances provided by nndist
where expressed in radians.
So, if θ = a /r, where θ is the subtended angle in radians, a is arc length, and r is Earth radius), then, to calculate a
the equations becomes: a = θr.
However, the distances transformed in such a way ranged from:
a = 6371 * 0.3 = 1911.3, and
a= 6371 * 4.2 = 2650.2
This is evidently wrong; since the maximum distance measured using – for example – Qgis between the farthest points is just 480 km…
Can anybody indicate me where am I mistaken?
Thanks a lot in advance!!!
Upvotes: 1
Views: 872
Reputation: 115382
nndist
is simply calculating the euclidean distance. It does no unit conversion. As such you have given it values in "degrees", and thus it will return a value whose units are degrees. (not radians).
Thus
6371*0.3*pi/180 = 33.36
will give an approximation of the distance between these points.
A better approach would be to use great circle distances (eg in geosphere or gstat packages or to project the lat/long coordinates onto an appropriate map projection. (rgdal::spTransform
will do this) and then nndist will calculate your distances in metres.
Upvotes: 3