Reputation: 5380
Given the object data
, which is of type numpy.ndarray
, how can I perform the following in one line?
VERY_LOW = np.where(data<=-2, 'VERY_LOW', 'LOL').astype('S12')
LOW = np.where((data>-2) & (data<=-1), 'LOW', VERY_LOW)
AVERAGE = np.where((data>-1) & (data<+1), 'AVERAGE', LOW)
HIGH = np.where((data>=+1) & (data<+2), 'HIGH', AVERAGE)
VERY_HIGH = np.where(data>=+2, 'VERY_HIGH', HIGH)
Basically, what I am trying to achieve is to assign a tag to each cell depending on its value (one out of five available).
Upvotes: 0
Views: 49
Reputation: 97281
Try this:
import numpy as np
data = np.random.randint(-5, 5, size=20)
conditions = [
[data <= -2, 'VERY_LOW'],
[data <= -1, 'LOW'],
[data < 1, 'AVERAGE'],
[data < 2, 'HIGH'],
[True , 'VERY_HIGH']
]
condlist, choicelist = zip(*conditions)
np.select(condlist, choicelist)
the output is something like:
array(['VERY_HIGH', 'VERY_LOW', 'VERY_HIGH', 'VERY_HIGH', 'VERY_HIGH',
'AVERAGE', 'VERY_HIGH', 'LOW', 'LOW', 'AVERAGE', 'AVERAGE',
'VERY_LOW', 'HIGH', 'HIGH', 'VERY_HIGH', 'VERY_HIGH', 'VERY_LOW',
'AVERAGE', 'VERY_HIGH', 'VERY_LOW'],
dtype='|S11')
If you can use Pandas, (there maybe some problem about equal conditions):
import pandas as pd
pd.cut(data, [-np.inf, -2, -1, 1, 2, np.inf],
labels=["VERY LOW", "LOW", "AVERAGE", "HIGH", "VERY_HIGH"])
Upvotes: 0
Reputation: 21831
You could write a function that maps a value to a tag, and then use the np.vectorize
function to apply it.
def map_func(x):
if x <= -2:
return 'VERY LOW'
elif <= -1:
return 'LOW'
# Keep adding more conditions here
else:
return 'OTHER'
vec_map_func = np.vectorize(map_func)
tag_array = vec_map_func(data)
Upvotes: 1