Reputation: 1559
I believe I have successfully trained an SVM
, but when I try to predict with it, the output is entirely 1's.
My code for training looks like this:
for(size_t i = 0; i < (testPosArraySize); i++){
testGivenImg = imread(imagePosDir[i]);
detector->detect(testGivenImg, testKeypointsPos);
bowDE.compute(testGivenImg, testKeypointsPos, testFeaturesPos);
testFeaturesPos.reshape(1, 1);
testFeaturesVec.push_back(testFeaturesPos);
}
for(size_t i = 0; i < (testNegaArraySize); i++){
testGivenImg = imread(image[i]);
detector->detect(testGivenImg, testKeypointsNega);
bowDE.compute(testGivenImg, testKeypointsNega, testFeaturesNega);
testFeaturesNega.reshape(1, 1);
testFeaturesVec.push_back(testFeaturesNega);
}
Mat labels(numSamples, 1, CV_32F);
labels.rowRange(0, testPosArraySize).setTo(1);
labels.rowRange(testPosArraySize + 1, numSamples).setTo(-1);
SVM.model.train(fileTestFeat, labels, Mat(), Mat(), SVMParams());
My code for prediction looks like this:
vector<Mat> predictMatVec(predictArraySize); // -- amount of testing images
for(size_t i = 0; i < (predictArraySize); i++){
predictImg = imread(imageNegaDir[i]);
detector->detect(predictImg, predictKeypoints);
bowDE.compute(predictImg, predictKeypoints, predictFeatures);
predictFeatures.reshape(1, 1);
predictMatVec[i].push_back(predictFeatures);
Mat predictMat = Mat(predictMatVec);
float* predictFloat1D = (float*)predictMat.data;
Mat predictMat1D(1, fileTestFeat.cols, CV_32FC1, predictFloat1D);
float predictFloat = model.predict(predictMat1D);
cout << " -- SVM output: " << predictFloat << endl;
}
But it is returning nothing but 1's.
What is wrong with it?
Upvotes: 3
Views: 5171
Reputation: 5364
So, the vocabulary has been already created (e.g. by BOWKMeansTrainer
) and you start to train you SVM classifier, right?
At this point you have a feature detector, extractor, matcher and a BOW image descriptor extractor (to compute an image descriptor using the bag of visual words) such as:
cv::Ptr<cv::FeatureDetector> detector = cv::FeatureDetector::create("SURF");
cv::Ptr<cv::DescriptorExtractor> extractor = cv::DescriptorExtractor::create("SURF");
cv::Ptr<cv::DescriptorMatcher> matcher = cv::DescriptorMatcher::create("BruteForce ");
cv::BOWImgDescriptorExtractor bowide(extractor, matcher);
bowide->setVocabulary(vocabulary);
First of all we need to scour the training set for our histograms:
cv::Mat samples;
cv::Mat labels(0, 1, CV_32FC1);
for(auto& it : imagePosDir)
{
cv::Mat image = cv::imread(it);
std::vector<cv::KeyPoint> keypoints;
detector->detect(image, keypoints);
if(keypoints.empty()) continue;
// Responses to the vocabulary
cv::Mat imgDescriptor;
bowide.compute(image, keypoints, imgDescriptor);
if(imgDescriptor.empty()) continue;
if(samples.empty())
{
samples.create(0, imgDescriptor.cols, imgDescriptor.type());
}
// Copy class samples and labels
std::cout << "Adding " << imgDescriptor.rows << " positive sample." << std::endl;
samples.push_back(imgDescriptor);
cv::Mat classLabels = cv::Mat::ones(imgDescriptor.rows, 1, CV_32FC1);
labels.push_back(classLabels);
}
Do the same for imagePosNeg
except that classLabels
will have zero values, such as:
...
cv::Mat classLabels = cv::Mat::zeros(imgDescriptor.rows, 1, CV_32FC1);
labels.push_back(classLabels);
...
Note how I build the samples and the labels, I marked the positive samples with labels '1', and then the negatives with label '0'. So we have the training data for each class (here for positives and negatives) in samples
. Lets's get training:
cv::Mat samples_32f;
samples.convertTo(samples_32f, CV_32F);
CvSVM svm;
svm.train(samples_32f, labels);
// Do something with the classifier, like saving it to file
Then testing let's get testing the classifier:
for(auto& it : testDir)
{
cv::Mat image = cv::imread(it);
std::vector<cv::KeyPoint> keypoints;
detector->detect(image, keypoints);
if(keypoints.empty()) continue;
// Responses to the vocabulary
cv::Mat imgDescriptor;
bowide.compute(image, keypoints, imgDescriptor);
if(imgDescriptor.empty()) continue;
float res = svm.predict(imgDescriptor, true);
std::cout << "- Result of prediction: " << res << std::endl;
}
Is it working?
Update #1:
Here I made a simple example about BOW+SVM under OpenCV 3.0: https://github.com/bkornel/OpenCV_BOW_SVM/blob/master/main.cpp
This works me fine for classifying bottles of Coca Cola / Pepsi. I also published the binaries so you can have a try on your database. Hope it works :)
Upvotes: 2