Reputation: 2689
I am working with a classification algorithm that requires the size of the feature vector of all samples in training and testing to be the same.
I am also to use the SIFT feature extractor. This is causing problems as the feature vector of every image is coming up as a different sized matrix. I know that SIFT detects variable keypoints in each image, but is there a way to ensure that the size of the SIFT features is consistent so that I do not get a dimension mismatch
error.
I have tried rootSIFT
as a workaround:
[~, features] = vl_sift(single(images{i}));
double_features = double(features);
root_it = sqrt( double_features/sum(double_features) ); %root-sift
feats{i} = root_it;
This gives me a consistent 128 x 1
vector for every image, but it is not working for me as the size of each vector is now very small and I am getting a lot of NaN
in my classification result.
Is there any way to solve this?
Upvotes: 4
Views: 1601
Reputation: 35525
Using SIFT there are 2 steps you need to perform in general.
After the second step, you should have a fixed amount of points for the whole set of images (considering they are images of the same object). The amount of points will be significantly smaller than in each single image (sometimes 30~ times less amount of points). Then do whatever you want with them!
Hint for matching: http://www.vlfeat.org/matlab/vl_ubcmatch.html
UPDATE:
You seem to be trying to train some kind of OCR. You would need to probably match SIFT features independently for each character.
How to use vl_ubcmatch:
[~, features1] = vl_sift(I1);
[~, features2] = vl_sift(I2);
matches=vl_ubcmatch(features1,features2)
Upvotes: 3
Reputation: 10682
You can apply a dense SIFT to the image. This way you have more control over from where you get the feature descriptors. I haven't used vlfeat, but looking at the documentation I see there's a function to extract dense SIFT features called vl_dsift. With vl_sift, I see there's a way to bypass the detector and extract the descriptors from points of your choice using the 'frames' option. Either way it seems you can get a fixed number of descriptors.
If you are using images of the same size, dense SIFT or the frames option is okay. There's a another approach you can take and it's called the bag-of-features model (similar to bag-of-words model) in which you cluster the features that you extracted from images to generate codewords and feed them into a classifier.
Upvotes: 2